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Convection

0 Stability

0 Mixing-Length Theory
= The Local Formalism
= Numerical Test Calculations
= Overshooting: A Non-Local Formalism

0 Granulation

0 Mesogranulation
0 Supergranulation
0 Giant Cells
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Stability

Energy transport mechanisms: radiation, convection, and
conduction

Stratification of the outer layer (200,000 km) is unstable

Mixing-length concept: parcel of gas travels a certain distance,
dissolves, and deposits its energy

Adiabatic displacement from equilibrium position (no oscillation!)
Schwarschild criterion (1906)
Condition for instability (pressure equilibrium)
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Variations of the mean molecular weight & and chemical
composition
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u dr

Ideal gas equation
P=pT/u
Core material is fully ionized (gu/dr), = 0

du/ dr towards center is negative due to the accumulation of helium

= stabilizing
Assume instantaneous adjustment of the ionization equilibrium
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Mixing-Length Theory

Viscosity vs. turbulent motion

Numerical methods (Navier-Stokes equation in 3D )
Schmidt and Prandtl (1915-1930) and Bohm-Vitense (1958)
Mixing-length

| =aH,

Energy flux
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Radiative flux
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Mean excess temperature
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Assume that the mean value of oris half the mixing length
AT =(V-V')Tal2

Convective flux

Fo = apc,vT (V-V')/2

Convective velocity

o°orot> =—gApl p=goAT [T

Pressure equilibrium (4P = 0) and integration

qug5 Ny
L =22 (v-V')(sr
(%) -2 v-vyen

Work done by buoyancy force appears as kinetic energy of the
parcel

Introduce correction factor of /2 to account for friction
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Radiative losses across the surface of the parcel (d = distance over which
AT drops to zero)
166T* AT 8aoT*
Fo =~ (V')
3kp d 3kpd
Convective flux
Fo =apCVT (V =V, )/ 2+ apc,vT (V,-V')/ 2
First term (ideal adiabatic conditions) and second term (real convective
flux)

Radiative loss per unit time

160T3S
V' —-V)= V.-V
TS (V=9)=pea(¥, -V

Spherical parcels d = (8/9) /and S// gd = 9/2
Temperature gradients

24:[25T 3pY2

V-V, =20 (V-V') with U= T
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Conditions for Convection in Stars

0 The opacity is large, implying that an unachievable
temperature gradient would be necessary for radiative
energy transport

O A region exists where ionization is occurring, causing a
large specific heat and a low adiabatic temperature
gradient

0 The local gravitational acceleration is, as would be the
case in distended stars, again leading to a low adiabatic
temperature gradient

0 The temperature dependence of the nuclear energy
generation rate is large, causing a steep radiative
flux gradient and a large temperature gradient
(CNO cycle or triple alpha process)
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