

Ground-based Solar Optical/IR Telescopes

Wenda Cao

Big Bear Solar Observatory New Jersey Institute of Technology

Big Bear Solar Observatory

Diffraction Limited Images

D = 1.0 m

N

Big Bear Solar Observatory

New Jersey's Science & Technology University

Diffraction Limited Magnetograms

Big Bear Solar Observatory

US 4 meter DKIST

*

- Danel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST)
- Under construction phase atop Haleakala volcano on Maui, HI
 - Project budget of \$ 0.26 Billion supported by US NSF
- Led by US NSO with a collaboration of 22 institutes
 - Expect 1st light observation in 2019

Courtesy : T. Rimmele

DKIST Main Features

- Four-meter aperture
- All reflecting, Off axis optical design
- Integrated high-order adaptive optics (MCAO)
- Low-scattered light coronal in NIR
- Integrated high-precision polarimetry
- Facility-class instruments

High Spatial (25km@500nm), Spectral & Temporal Resolution

High Precision Polarimetry (accuracy 5x10⁻⁴lc)

High Photon Flux, Low Scattered Light

Simultaneous UV, VIS, NIR & Far Infrared (new diagnostics)

Courtesy : T. Rimmele

- VBI: Visible Broadband Imager (ATST)
 - Red and blue channel
 - Diffraction limited imaging
- ViSP: Visible Spectro-Polarimeter (HAO, Bc
 - versatile spectrograph & polarimeter
 - Broad selection of spectral lines
- VTF: Visible Tunable Filter (KIS, Germany)
 - 2D spectroscopy & polarimetery

- DL-NIRSP: Diffraction Limited Near Infrared Spectro-polarimeter (IfA, Hawaii)
 - 8 slit Spectrograph & polarimeter, near IR optimized
 - Covers photosphere to corona
- Cryo-NIRSP: Cryogenic Near Infrared Spectro-polarimeter (IfA, Hawaii)
 - Cryogenically cooled spectrograph & polarimeter
 - 1 to 5 micron
 - Coronal Magnetometry
 - Spatial resolution: 1 arcsec (photons, photons, photons)

US 1.6 meter NST

- NST is today in regular scientific use
- Big Bear Lake reduce ground level convection, and predominate winds bring smooth air flows across the flat surface of the lake
- Seeing character at Big Bear differs markedly from the high altitude, volcanic island sites measured in the ATST site survey. The median r₀ for BBSO is shown in black (Hill et al. 2004)
- Observations using AO will be viable for extended periods during a typical day
- Median r₀ ~ 6 cm, and wind speed ~ 4-8 m/s @ 500 nm

Big Bear Solar Observatory

NST Features

- All reflecting, off-axis Gregory optical configuration
- PM: off-axis 1.6 m clear aperture (1.7 m blank) with f/2.4
- Figuring PM to 16 nm rms
- Effective focal length: 83.2 m (F/52 at Gregorian focus and F/28 at Coudé focus)
- ✤ FOV: 2' in prime focus
- Wavelength range from 400 nm to NIR in Coudé lab with AO
- Integrated active optics (ao) and adaptive optics (AO)
- Quasi-static telescope alignment
- Diffraction limited: 0.06"@ 500 nm and 0.2"@ 1.56 μm with AO
- Polarization calibration optics immediately before M3
- Facility-class instruments

Big Bear Solar Observatory

New Jersey's Science & Technology University

2nd Generation AO: AO-308

- AO-308 is operational, AO-308 is a collaboration between BBSO and NSO
- Shack Hartmann WFS with 308 subapertures (AO-308): 20 sub-apertures across the NST primary mirror
- Xinetics Deformable Mirror with 357 actuators and 5 mm spacing
- Phantom V.7.3 camera with a frame rate of 2000 Hz for 400 by 400 pixel sub-array
- Bitware TigerSHARC Boards with 16 digital signal processors (DSPs)
- Expected Closed-loop Bandwidth: 120 Hz
- Acquire diffraction limited imaging over the telescope's full range of operation

New Jersey's Science & Technology University

Big Bear Solar Observatory

3rd Generation AO: MCAO

- Multi-Conjugate AO (MCAO) is a collaboration with KIS & NSO
- Two Shack Hartmann wavefront sensor for narrow and wide field measurement
- Three DMs with 357 actuators conjugated to ground, 3-5 km, and 6-9 km
- Multi-CPU parallel computation
- High speed camera with frame rate of 2000 Hz
- Closed-loop Bandwidth: 120 Hz
- Expand field of view of diffraction limited observations to ~ 1' in the visible

Big Bear Solar Observatory

New Jersey's Science & Technology University

NST Scientific Instruments

- Adaptive Optics System (AO: AO-76, AO-308, MCAO)
 – SPIE.9148.100, SPIE.9148.193
- Visible Imaging Spectrometer
 (VIS) SPIE.9147.15
- Near InfraRed Imaging Spectropolarimeters (IRIM, NIRIS)
 – SPIE.9147.127
- Cryogenic Infrared Spectrograph
 (CYRA) SPIE.9147.129
- Broad-band Filter Imager (BFI)
- Fast Imaging Solar Spectrograph
 (FISS)

Big Bear Solar Observatory

New Jersey's Science & Technology University

1.5 meter GREGOR

- ✤ 2001: GREGOR consortium established
- 2003: Decommissioning of 45 cm Gregory Coudé Telescope
- 2004 2011: Design, fabrication and integration of dome, telescope structure, optics, instruments, control and cooling system
- 2013: Science verification observations

MAN

✤ 2014 – 2015: Early Science Phase (consortium only)

GREGOR Overview

- Optical Configuration
 - Gregory (3 on-axis mirrors)
 - effective focal length 55 m (F/38)
 - nominal field-of-view 150 arcsec
- Primary mirror
 - 1.5 m aperture
 - focal length 2500 mm
 - light-weighted Zerodur
 - active cooling
- Wavelength coverage
 - 350 nm NIR (thermal IR posible)
- Foldable dome
- Integrated adaptive optics
- Three post-focus instruments

Courtesy : O. von der Lühe

Courtesy : O. von der Lühe

SDO HMI Continuum

31 May 2013 12:35

Courtesy : O. von der Lühe

NOAA AR11757, GREGOR Broad-Band Imager, 589 nm, 20s, 4008x2672 px, 0".03 / px

Courtesy : O. von der Lühe

Slit (")

GRating Infrared Spectrograph (GRIS)

1 meter NVST

- Altitude: 1720 m
- Longitude: 102°57'11" E
- Latitude: 24°34'47" N
- Sunshine duration: > 2200 hrs/yr
- Average wind velocity: ~ 6 m/s
- Integrated water vapor : ~ 11 mm
- (one-year average)

- Average r_0 : 10 cm (one-year average)
- First light Scientific results: 2012

• Spectrometers (*left*, not to scale) and some observational results (*right*). The spectra of a quiet region around 656.3 nm and 854.2 nm observed by multiband spectrometer. The spectra of a small sunspot around 1564.8 nm observed by high dispersion spectrometer.

High resolution movie of AR11554 taken with NVST at TiO 706 nm *Courtesy : Z. Liu*

Courtesy : Z. Liu Unprecedented high resolution limb observation taken with NVST

Technical Challenges for Next Generation Solar Telescopes

Wavefront Control

✤ wavefront sensoring, active optics (ao), Visible AO, MCAO

* Thermal Control

Telescope prime focus, all optics, enclosure, coude lab, interfaces ...

Scattered Light Control

Spider diffraction, micro roughness, dust, mirror cleaning ...

Big Bear Solar Observatory

Technical Challenges for Next Generation Solar Telescopes (cont.)

Telescope Optics

- On-axis: Light-weight mirror polishing, metrology, alignment ...
- Off-axis: Primary mirror figuring, metrology, alignment ...
- Segmented: on-focus and in-phase ...

* High Precision Polarimetry

Integrated into optical path, accurate polarization calibration ...

* Near, Mid and Far Infrared

Structure design, cryogenic technique, FPA

Instrumentation

Multi-FPIs, multi-slits and fiber spectrograph, multi-instrument operations

Data Handling

Big data, collection, storage, distribution

* Control Software

Keep your sanity

New Jersey's Science & Technology University

Summary

- Large solar telescopes hold promise of revolutionizing our knowledge of the solar atmosphere and its dynamics.
- With several large aperture optical/IR telescopes just coming on-line, or scheduled for the near future, solar physics is on the verge of a quantum leap in observational capabilities.
- Current and next generation Chinese large ground-based solar telescopes are/will be playing a critical roles in solar high resolution, nonsunset observations.

Big Bear Solar Observatory