
Astron. Astrophys. 356, 218–233 (2000) ASTRONOMY
AND

ASTROPHYSICS

Non-axisymmetric oscillations of roAp stars

L. Bigot1, J. Provost1, G. Berthomieu1, W.A. Dziembowski2, and P.R. Goode3
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Abstract. We calculate the effect of a strong dipole magnetic
field on non-axisymmetric oscillations for roAp stars, with a
typical range of photospheric magnetic fieldsBp [0.5-1.5] kG.
As Dziembowski & Goode (1996), we find that the oscillations
are strongly affected by such magnetic fields in two different
ways. The first one concerns the stability of modes, which are
damped due to dissipation by Alfvénic waves. It leads to a small
imaginary part of the frequency, about (1-15µHz). The real
part of the frequencies is also affected and is greater in the
presence of magnetic field, with a shift of about 1-20µHz. We
find that these shifts are strongly influenced by the geometry of
the mode, i.e. the value of the degree`, as it has already been
shown by Dziembowski & Goode (1996), and also bym, the
azimuthal degree, with a significant amplitude. The magnetic
field, because it breaks the spherical symmetry of the problem,
raises partially the(2` + 1) degeneracy of frequency inm. We
find that the shift of both the real and imaginary parts is always
greater than in the case of axisymmetric oscillations (m = 0),
except for sectoral modes (` = m), for which the imaginary
part is smaller. The second effect of large magnetic fields is to
complicate the mode identification. The perturbations cannot be
represented by pure single spherical harmonic, but by a series of
harmonics due to the angular dependence of the Lorentz force.
It is shown that this mixing of spherical harmonics also depends
on the value ofm. However, our calculations do not explain the
observed selection of dipole modes in roAp stars, aligned with
the magnetic axis, since they do not minimize energy losses due
to Alfv énic waves.
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1. Introduction

The roAp stars are a special subgroup of Ap stars which show
rapid light variations. Since their discovery by Kurtz (1982),
their number has grown to about 30. They are cold Ap stars
(Teff∼ 8000K) having anomalous surface element abundances
of Sr, Cr and Eu. With a mass of about 2M�, they lie in the
HR diagram at the intersection between theδ-Scuti instability
strip and the main sequence. One important particularity of these

stars is the presence of a strong magnetic field of about kilogauss
amplitude, discovered first by Babcock (1947). It has roughly a
dipolar geometry, see Borra et al. (1982).

From the asteroseismological point of view, these roAp stars
constitute a specific class of variable stars: they oscillate with
high frequencies, say with large radial orders from 10 up to
about 30. This represents a range of periods from 6 to 14 min-
utes, similar to the 5-minute oscillations of the Sun, but with
much higher amplitude light variations (about1 mmag). Recent
discoveries by Martinez (1999) and Martinez et al. (1999) show
possible long periods of 30 and 29 min, in two roAp stars, HD
75425 and HD 13038 respectively. However, as in most cases,
roAp stars have rapid light variations, we assume, in this pa-
per, high frequencies for oscillations. Another particularity is
the geometry of these oscillations, which are aligned with the
magnetic axis. They appear essentially as dipole modes, char-
acterized by a spherical harmonic whose degree is` = 1 and
an azimuthal degreem = 0, say with the same geometry as
the magnetic field. Reviews on roAp stars are available in Kurtz
(1990) and Matthews (1991). Recent theoretical works about
roAp stars are discussed in Cunha (1998).

Any seismological study of roAp stars must take into ac-
count the presence of this strong magnetic field. A lot of studies
have been done to explain the seismological observations of
these objects. However, they have been limited to the linear
and adiabatic approximations. Even in this case, the difficulties
due to the magnetic field remain numerous. Roberts & Soward
(1983) developed analytical solutions of the problem but for
polytropic star models and for a weak magnetic field (≤ 0.1
kG), whose angular dependence has been neglected. They in-
troduced the concept of the magnetic boundary layer and the
possibility of Alfvénic wave production as a source of damping
for p-modes. Campbell & Papaloizou (1986) considered nu-
merically the general problem, taking into account the angular
dependence of the Lorentz force, still in the case of polytropic
models. However, they solved the problem for each colatitude.
The global problem was first treated by Dziembowski & Goode
(1996), who considered non-radial axisymmetric stellar oscilla-
tions, with strong magnetic fields still in the case of the magnetic
boundary layer concept. They have shown that the frequencies
are shifted by the magnetic field in a range of 10-20µHz, for
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the real part of the frequency, and2−10µHz for the imaginary
part due to Alfv́enic waves. They also showed that the modes
of oscillations are not pure single harmonics but a mixing of
them due to the angular dependence of the Lorentz force in-
side the magnetic layer. These results are consistent with the
observations of HR 3831, whose frequency spectrum has been
described by Kurtz (1992) as a sum of spherical harmonics of
low degrees. Recently Cunha & Gough (1998) presented an
alternative approach based on degenerate perturbation theory.

The aim of the present paper is to generalize the work of
Dziembowski & Goode (1996) to non-axisymmetric oscilla-
tions, i.e. with the possibility of azimuthal dependence of modes
and for magnetic fields up to1.5 kG. We still use the same as-
sumptions: we neglected non-adiabatic processes, like excita-
tion, radiative damping, coupling with convection, and the effect
of rotation.

2. The magnetic boundary layer approach

In the presence of a magnetic field the full set of equations de-
scribing stellar oscillations is very complicated to solve because
of the Lorentz force. Hence, we adopted the concept of a mag-
netic boundary layer used in previous papers dealing with this
problem, (Roberts & Soward 1983; Campbell & Papaloizou
1986; Dziembowski & Goode 1996). Although the magnetic
field is strong everywhere inside the star, the Lorentz force has
an influence on the dynamics of the oscillations only in the
outer parts, where the density becomes so small that the mag-
netic pressure is of the same order as (or larger than) the gas
pressure.

Let us define the ratio

β =
B2

p

4πΓ1p
=

v2
A

c2
S

. (1)

Γ1 is the adiabatic exponent,p the unperturbed gas pressure.vA

andcS are respectively the Alfv́enic and sound speeds, andBp

the photospheric magnetic field (0.5-1.5 kG).
We can divide the star into two regions. The magnetic pres-

sure is neglected compared with the gas pressure in the whole
star (whereβ � 1), except in the very thin layer near the photo-
sphere whereβ ≥ 1. This thin layer, whereβ is non-negligible
compared with the unit, is called the boundary magnetic layer.
Inside this layer, there are no pure p-modes but rather the so-
called magneto-sonic modes whose properties are a mixture of
acoustic and Alfv́enic modes. The bottom of this layer,rfit, is
chosen where the quantityβ is sufficiently small to neglect the
magnetic pressure and to provide a decoupling between p-modes
and the magnetic field (see Table 1 in Appendix A). Then, to
find the eigen-modes of the star, we must solve two systems
of equations. Inside the star (r ≤ rfit), we solve the system
for adiabatic p-modes oscillations without a magnetic field, de-
scribed for example in Unno et al. (1989). In the magnetic layer,
we integrate the complete system of ideal MHD equations still
in the case of adiabatic oscillations (see appendix A). The ad-
vantage of this method is that, since this layer is very thin and
situated at the top of the star, we can adopt a plane-parallel ap-

proximation, i.e. we neglect, locally, the curvature of the star.
Assuming that the horizontal wave number remains small com-
pared with the radial wave number, i.e. for small values of`.
We neglect the derivatives with respect to the colatitudeθ for
the perturbed quantities. Matching the solutions of the magnetic
layer with the solutions of the deep interior, i.e. corresponding
to non-magnetic oscillations, one obtains the eigen frequency
spectrum of the star.

2.1. The magnetic layer

We divided the magnetic layer into a mesh in the colatitudeθ,
and we solved the MHD system of equations for each colatitude
point with this plane-parallel approach.

The magnetic field is assumed to be dipolar which is a good
approximation for Ap stars (Borra et al. 1982)

→
B0=

Bp

x3 (cos θ
→
er +

sin θ

2
→
eθ) (2)

x being the dimensionless radial position (x = r/R).
In our non-axisymmetric treatment, the displacement is

given by

→
ξ = r{y(x, θ)

→
er +z(x, θ)

→
eθ +w(x, θ)

→
eφ}eimφeiωt (3)

whereω is the pulsation of the acoustic mode,m the azimuthal
order andφ the longitudinal angle. Another unknown quantity
is the relative perturbation of the pressure

δp

p
= q(x, θ)eimφeiωt. (4)

The Eulerian perturbation of the Lorentz force in the case of
MHD approximation is

→
L= 1/4π(

→
∇ ∧

→
B1)∧

→
B0 with

→
B1=

→
∇ ∧(

→
ξ ∧

→
B0) (5)

In the magnetic layer we neglected all the derivatives byθ com-
pared to the derivatives byx and we assumed large radial wave
numbers, since we study high frequency oscillations. Then one
gets the following form for the Lorentz force,

Lr =
B2

p

8πR

(
∂2h

∂x2 + im
sin θ

2
∂w

∂x

)
(6)
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4πR sin θ

(
im
2

∂h
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− cos2 θ sin θ

∂2w
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(8)

where

h = y
sin2 θ

2
− z sin θ cos θ. (9)

In the case of non-axisymmetric oscillations,Lφ is not equal to
zero, therefore the full system to solve contains the equation of
motion projected on

→
eφ. Then, this system for adiabatic motions
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Fig. 1. (left)Real part ofF(θ, ω, m), (right) the imaginary part ofF(θ, ω, m) as functions ofcos θ for frequencies corresponding to a mode
such asn = 24, ` = 1 and for two values ofm: m = 0 (full line) andm = 1 (dashed line). The magnetic field isBp = 0.7 kG.

which was of the fourth order in the axisymmetric case (see
Dziembowski & Goode 1996) becomes of the sixth order (see
in Appendix A).

We assume small perturbations which leads us to linearize
these equations. More details about this system are given in Ap-
pendix A. The result of this integration in the magnetic layer,
with adequate boundary conditions at the top of the star, leads
to the ratioF(θ, ω, m) betweenqp andyp the Lagrangian per-
turbation of pressure and the radial displacement for p-modes
atxfit

qp(xfit, θ) = F(θ, ω, m)yp(xfit, θ) (10)

This relation is then used as a boundary condition to solve nu-
merically the classical system of equations, say without a mag-
netic field, for the inner part of the star,x ≤ xfit. The function
F(θ, ω, m) only depends on the absolute value ofm, because
of the azimuthal symmetry of the unperturbed magnetic field.
Therefore, the perturbations of the frequencies, due to the mag-
netic field, will depend also on the absolute value ofm.

In Fig. 1, we can see two plots of the functionF which repre-
sent its real and imaginary parts, for a given radial ordern = 24.
We see that this function depends onm, for both the real and
the imaginary parts. This implies that the corresponding eigen
frequencies will also depend onm. The angular dependence of
F in θ is influenced by the angular dependence of the “acous-
tic cut-off frequency”, i.e. the maximal frequency for trapped
p-modes. It follows from the expression Eq. A.22 in Appendix
A that this frequency is

ωac =
cS

2H

√
1

1 + tan2 θ
4

(11)

with H the pressure scale height. Note from Eq. A.22 that when

tan2 θ ≥ tan2 θ0 (12)

tan2 θ0 = 4

(
ω2

ac,0

ω2 − 1

)
with ωac,0 =

cS

2H
(13)

the acoustic waves, at the top of the boundary layer, become
partially propagating in the atmosphere. The equality in Eq. 12

corresponds to a null wave number and forθ = θ0. Then, for
a given frequency we have two regions in colatitude: from the
pole toθ0 the acoustic waves are reflected whereas forθ0 to
the equator they are partially propagating. This change of the
mode’s nature has a signature in the behaviour of the function
F(θ, ω, m). In the case of Fig. 1cos θ0 ≈ 0.6.

Note thatωac is equal to the non-magnetic frequencyωac,0
at the pole, and is smaller thanωac,0 everywhere else. For the
limiting case of the equator, it is equal to zero: therefore, there
are no trapped waves at the equator.

2.2. The interior

Following Roberts & Soward (1983), there is a full decoupling
between Alfv́enic and acoustic modes forx ≤ xfit. This de-
coupling is recovered from Eq. A.10 and A.12 in Appendix A
because of the small value ofβ. The Alfvénic modes are as-
sumed to be dissipated well before the center of the starr = 0.
A WKBJ treatment has been adopted to find them.

The p-modes are described by the system of equations with-
out a magnetic field, as presented in Unno et al. (1989), whose
solutions arey`, q` the radial displacement and the Lagrangian
perturbation of the pressure.` is the degree of the spherical har-
monic Y m

l = Pm
l eimφ. However, as the boundary condition

F(θ, ω, m) depends onθ, the solutions are no longer repre-
sented by a singleY m

l , but by linear combinations of associated
Legendre functions,

yp(x, θ) = (
nnl∑

k=m

Dkmyk(x)Pm
k (cos θ)) (14)

qp(x, θ) = (
nnl∑

k=m

Dkmqk(x)Pm
k (cos θ)). (15)

Dkm represents the coefficient of angular mixing, it corresponds
to the “weight” of eachPm

k in the sum.nnl is the maximal
degree of the Legendre functions in the series.

The effect of magnetic field on p-modes, in the interior, is
described through the coefficientsDkm.
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Fig. 2. Shift of the real part (left) and the imaginary part (right) of a set of non-magnetic frequenciesν0, for several degrees̀in the case of
axisymmetric oscillations. These two sets of curves are plotted for a1.0 kG magnetic field.

Then, the upper boundary condition Eq. 10 becomes,

nnl∑
k=m

Dkm{qk(xfit)δkk′ − yk(xfit)Fkk′,m(ω)} = 0 (16)

with,

Fkk′,m = 4π

∫ 1

0
Pm

k (cos θ)F(θ, ω, m)Pm
k′ (cos θ)d(cos θ)

(17)

We use here the following normalization forY m
` ,∫

Y m
k

(
Y m′

k′

)∗
d(cos θ)dφ = δkk′δmm′ (18)

with δkk′ the Kronecker symbol.
The relation in Eq. 16 (withk′ taking the same values ask)

is a homogeneous system whose solutions are the coefficients
Dkm. Its discriminant has to be equal to zero for eigen frequen-
cies (for non-trivial solutionsDkm). This last condition is used
to find the frequency spectrum of the star.

BecauseF(θ, ω, m) is even incos θ (see the system in ap-
pendix A; it only depends oncos2 θ), the functionFkk′,m does
not vanish ifk andk′ have the same parity. In order to have a non-
zeroFkk′,m, one must choose for the series Eq. 14 and Eq. 15
either only odd-Legendre functions or only even-Legendre func-
tions, according to the parity of the degree`, i.e. the degree of
the mode without a magnetic field. As we putnnl = 36, we
have then,18 terms in the series Eq. 14-15.

3. Results

3.1. The model

The results presented in this paper have been calculated with
the following stellar model

Model M/M� R/R� logL/L� Xc

1.8 1.531 1.029 0.70

L is the luminosity of the star andXc the hydrogen fraction at
the center. This model has been obtained using usual assump-
tions for stellar structure and also neglecting all the processes
of chemical diffusion.

We found for the non-magnetic acoustic cut-off frequency
(assuming an isothermal atmosphere)

νac,0 =
cS

4πH
= 2726.27µHz. (19)

ν denotes the cyclic frequency. Hereafter, we will consider only
high frequencies, i.e. from about1200 µHz to about2300 µHz,
which represent a typical range of observable frequencies (i.e.
radial numbers from about12 to 24).

3.2. The magnetic shift of frequencies

The calculations show that the magnetic field leads to a shift
of the real part of the frequency, denoted by∆νR, and also
creates a positive complex componentνI . The imaginary part
comes from the coupling between p-modes and the magnetic
field inside the boundary layer. A part of the p-mode’s energy
is then converted into Alfv́enic waves inside this layer, which
are dissipated beneath this layer, in the interior (see for instance
Roberts & Soward 1983). Therefore, we can write the frequency
in the following form

ν = ν0(n, `) + ∆νR(n, `, m, Bp) + i νI(n, `, m, Bp) (20)

with ν0 the frequency without a magnetic field. In the asymptotic
limit (for large n) the non-magnetic frequency is related to the
radial order by

ν0(n, `) ≈ ∆ν0(n +
`

2
+ ε) (21)

with n the radial order andε a constant of the stellar model.
The large separation∆ν0 is

∆ν0 =

{
2
∫ R

0

dr

cS(r)

}−1

≈ 87.2µHz. (22)

The results are presented in Fig. 2-5. We note that the effect of
the magnetic field, i.e. the frequency shift, increases with the
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Fig. 3. Shift of the real part of the frequency (Re(ν)-ν0) (left) and the imaginary part (right) as functions of the non-magnetic frequencyν0, for
a given degreè = 1, and its corresponding values ofm, herem = 0 andm = 1. These two curves are plotted for a0.8 kG magnetic field.

Fig. 4.Shift of the real part of the frequency (left) and the imaginary part (right) for a given degree` = 2, but for different values ofm: m = 0,
1 and2. These curves are plotted for a0.7 kG magnetic field.

radial ordern, for both the real and imaginary parts. This is
explained by the fact that the effect of the perturbation, far from
the outer turning point, is small. Only modes which have fre-
quencies close to the critical cut-off frequency are significantly
affected by the magnetic field.

However, the results we have obtained point out that this
shift of frequencies strongly depends on the geometry of the
mode, say the value of̀andm which corresponds to the geo-
metric dependence of the Lorentz force inθ andm, see Eq. 6-8.

The m-dependence of the frequencies is a direct effect of
the magnetic field since it breaks the spherical symmetry of the
problem (if we neglect the rotation). It leads then to a raising
of the (2` + 1) degeneracy of the frequencies (see, for exam
ple, Eq. 21). This effect is analogous to the Zeemann effect in
Quantum Mechanics. However, it remains a partial degeneracy1

since the frequencies only depend on the absolute value ofm,

1 the degeneracy inm is partially lifted because of the axisymmetry
of the dipolar magnetic field: there is no difference between waves mov-
ing with the phase velocityvφ = ωnlm/|m| andvφ = −ωnlm/|m| in

the
→
eφ direction; they are affected in the same way by

→
B0. Therefore,

it remains a partial degeneracy for the frequency which just depends
on |m|.

because the unperturbed magnetic field is dipolar and, therefore,
does not depend on the longitude (see Eq. 2).

First, we have investigated the influence of the degree` in
the case of axisymmetric oscillationsm = 0, in Fig. 2. In that
case, the typical range of∆νR is about5 − 18 µHz for high
overtones, sayν ≥ 2000 µHz and2 − 10 µHz for νI . We find
here the same order of magnitude as Dziembowski & Goode
(1996) for axisymmetric oscillations but for a younger star’s
model.

For both the real and imaginary parts, we see a systematic
difference between radial (` = 0) and non-radial modes (` /= 0);
for large frequencies the shift in the real part∆νR is lower than
in the radial case, whereas the shift of the imaginary part is
larger, for any value of̀ /= 0 (and forν ≥ 1800 µHz).

We have investigated how the magnetic effects on oscilla-
tions depend on the value ofm. The results are presented in
Fig. 3-5 for different values of̀ and in each case for its corre-
sponding values ofm (m ≤ l). Let us first examine the shift of
the real part∆νR. As a general result, non-axisymmetric oscil-
lations have greater real shifts of frequency than the casem = 0.
More, one sees that for any value of`, ∆νR always increases
with m. The modification of the frequency from the axisym-
metric case is relatively important. For example, in Fig. 5, we
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Fig. 5. Shift of the real part of the frequency (left) and its imaginary part (right) for a given degree` = 3, but for different values ofm: m = 0,
1, 2 and` = 3. These curves are plotted for a0.8 kG magnetic field.

Fig. 6. The imaginary part (Imν) of the fre-
quency is plotted as function of the real part
(Re ν), for magnetic fields between0.5 to 1.5
kG. The points on the curves are spaced by0.1
kG. Two radial orders (n = 24 for ` = 3, and
n = 25 for ` = 1) are presented. The frequen-
cies in the non-magnetic cases are represented
by the crosses (the number above them are the
corresponding degrees).

note that∆νR which was about10 µHz for m = 0 increases
up to18 µHz in the casem = 1, for Bp = 0.8 kG.

We see, in Fig. 3-5, that the imaginary part, also depends on
the value ofm. One notes that sectoral modes` = m, have
smaller imaginary parts than axisymmetric modes, whereas
modes with` /= m have larger shifts. The amplitude of the
modifications introduced for non-axisymmetric oscillations, as
for the real part, is also important. As we can see, forBp = 0.8
kG in Fig. 5,νI decreases from4 µHz (for ν ≈ 2000µHz) in
the casem = 0 to about2.5 µHz for m = 3 and increases up to
∼ 11µHz in the case ofm = 1, say more than twice the value
of the axisymmetric case.

These results show that the geometry and the stability of non-
axisymmetric oscillations are greatly influenced by the mag-
netic field. As a matter of fact, the imaginary part introduced
by magnetic processes is of the same order as the one due to
non-adiabatic effects (see for instance Dziembowski & Goode
1996).

On Fig. 6 and Fig. 7 we plot the imaginary part of the fre-
quency as a function of the real part, for several values of the
magnetic fieldsBp.

We see again that the behaviour of the frequencies with the
magnetic field strongly depends on the geometrical nature of
modes. For these graphs we extend the calculations up to1.5
kG. We see that the damping of modes, i.e.νI , passes through
a maximum. This maximum is obtained for a particularBp =
Bcrit whose value depends on the parameters`,m (e.g. for̀ = 1
m = 0 Bcrit ≈ 0.8kG). Such results have already been found
by Dziembowski & Goode (1996) but for axisymmetric modes.
Note also the behaviour of the mode such as` = m = 1, whose
frequencies form a loop, due to the fact that for some magnetic
fields (0.9 − 1.1 kG) both∆νR andνI decrease.

The observed oscillations are interpreted in terms of the
oblique pulsator model (see Kurtz 1982, and later improve-
ments by Dziembowski & Goode 1985,1986; Kurtz & Shiba-
hashi 1986; Shibahashi & Takata 1993) which states that the pul-
sation axis is nearly aligned with the magnetic axis and oblique
with the rotation axis. According to oblique pulsator model,
the observed modes have, generally, a dipole geometry (` = 1
m = 0). Our calculations do not explain this preference since
their geometries do not minimize energy losses due to Alfvénic
waves. As a matter of fact, we see in Fig. 3 and 6 that in most
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Fig. 7. The imaginary part (Imν) of the fre-
quency is plotted as function of the real part
(Re ν), for magnetic fields between0.5 to 1.5
kG. The points on the curves are spaced by0.1
kG. Two radial orders (n = 24 for ` = 2, and
n = 25 for ` = 0) are presented. The frequen-
cies in the non-magnetic cases are represented
by the crosses (the number above them are the
corresponding degrees).

of the cases the imaginary part is generally smaller for` = 1
m = 1 than for the sectoral modè= 1 m = 0. The same is
largely true for other degrees.

3.3. Small separations

As we have seen in the previous sections, the real part of the
frequency is shifted up to20µHz. This value is of the same
order as the small separations in the non-magnetic limit, say

S`,n = ν`,n+1 − ν`+2,n. (23)

These separations, in the non-magnetic case, are widely influ-
enced by the deep stellar interior. Consequently, they give useful
information about these regions and therefore an estimation of
the stellar age.

We see that the changes due to deep stellar structure (in the
non-magnetic case) are of the same order as the magnetic shifts
of frequencies (∼ 15 − 20 µHz). The non-magnetic separa-
tions are degenerate inm, as the corresponding frequencies.
However, the magnetic field raises partially the degeneracy for
ν and, therefore, the degeneracy forS. This implies that the
small separations in the case of non-axisymmetric oscillations
with magnetic field depend on the azimuthal degreem. Let us
define this separation by

Smm′
`,n = νm

`,n+1 − νm′
`+2,n. (24)

An example of this separation is given in Fig. 8, for` = 0, ` = 2
and` = 1, ` = 3.

We note, in these graphs, that the small separations do not
have the same behaviour with the magnetic field, depending
on the mode’s geometry. In the case of even degrees (` = 0,
` = 2) the small separations withm′ /= 0 are smaller than
the axisymmetric case and decrease withm′. In the case of
odd degrees (` = 1, ` = 3) we see thatS0m′

1,19 < S1,m′
1,19 with

m′ = 0, 1, 2, 3. More, one can note that for a given value ofm
(i.e.0 or 1) the small separations decrease with the value ofm′.

These results show that it is very complicated to get infor-
mation on stellar structure in terms of these small separations,
because of the perturbations introduced by the magnetic field.

3.4. Angular geometry of modes

In this subsection we discuss the influence of the angular depen-
dence of the Lorentz force on the geometry of p-modes oscilla-
tions. As we have seen in the previous subsection, the bound-
ary condition for p-modesF(θ, ω, m) depends onθ which is a

direct consequence of theθ-dependence of
→
L. We cannot rep-

resent a mode in the interior by a single spherical harmonic, as
for non-magnetic oscillations, but we need to expand the solu-
tionsyp, qp as a series of associated Legendre functions, Eq. 14
and Eq. 15. We saw that this angular expansion involved only
functions which have the same parity for` and the same value
of m.

The calculations show that, whenBp increases, the number
of terms with a significant amplitude in the series increases and
the “weight” of these terms, say the value ofDk,m, changes.

The contribution of these terms is found in the energy of the
mode. The kinetic energyel,m of a mode can be written as

el,m =
ω2

R

4

∫
V fit

∣∣∣∣ →
ξl,m

∣∣∣∣2 ρdV (25)

with the displacement,
→

ξl,m=
∑

k Dkm

→
ξ k,m and in spherical

coordinates

→
ξk,m= r

(
yk(r), yh,k(r)

∂

∂θ
,
yh,k(r)
sin θ

∂

∂φ

)
Y m

k (θ, φ)eiωt (26)

yh,k =
1

r2ρ0ω2 (p0(qk(r) + yk(r)V ) + ρ0Φ1k) (27)

whereΦ1 represent the Eulerian perturbation of the gravitational
potential.

SincePm
k form an orthogonal basis, we have

el,m =
∑

k

ek,m (28)

with,

ek,m =
ω2

R

4
|Dkm|2Ik 〈ρ〉 R5 (29)
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Fig. 8. (left) Small separations (inµHz) Sm
0,19 = ν0,20 − νm

2,19 for m = 0, 1, 2 as function of the photospheric magnetic field. (right) Small

separationsSmm′
1,19 = νm

1,20 − νm′
3,19 for m = 0, 1 m′ = 0, 1, 2, 3. The dashed curves corresponds tom = 0 andm′ = 0, 1, 2, 3 and the full

curves corresponds tom = 1 andm′ = 0, 1, 2, 3. In both cases the heavy line is for the axisymmetric case.

Fig. 9. We represent in the ordinate the ratio of the mode’s energyek, for ` = 1 m = 0 (left) and` = 1 m = 1 (right), divided by the total
energy

∑
k ek, as function of magnetic field. The expression of this ratio is given in the text.

Ik =
∫ xfit

0
x4 U

c1

(|yk|2 + k(k + 1)|yh,k|2) dx (30)

with

U =
dlnMr

dlnr
c1 = 3x3 M

Mr
. (31)

〈ρ〉 is the mean density of the star. In order to represent the
weight of each component of the total energy of the mode, we
plot the following ratio

ηk,m =
ek,m

el,m
=

|Dkm|2Ik∑
k |Dkm|2Ik

. (32)

Several plots ofηk are given in Fig. 9-13, as function of the
magnetic field. We plot only the componentsk which have non
negligible amplitudes. We see clearly that the energy of the main
component of the mode decreases whenBp increases, whereas
the energy of new components increases.

Let us examine, for example, the case of` = 1 in Fig. 9.
We see that whenBp is relatively small,≤ 0.6 kG, about 100%
of the energy is contained in the componentk = 1, m = 1.

However, the componentsk = 3, 7 get non negligible ampli-
tudes whenBp ∼ 0.7 − 0.8 kG. And for Bp = 0.89 kG the
energies of the three componentsk = 1, 3, 7 are equal, each
of them has about 30% of the total energy of the mode` = 1
m = 1. Nonetheless, the componentk = 5 also increases with
the magnetic field and becomes dominant forBp ≥ 1.1 kG.
We see that the presence of another component depends on the
value ofm; see for example the case of` = 2 m = 1 andm = 2
in Fig. 13. The values of the degrees, involved in this mixing,
strongly depend onm; the casem = 1 has larger degrees for
the Legendre functions than the casem = 2. One realizes that
the identification of modes is very difficult in the presence of
a strong magnetic field because the dominant component, and
then its geometry, of a given mode depends on the magnetic
field. In the present case, forBp ≤ 0.9 kG the dominant com-
ponent isk = 1 and forBp ≥ 1.1 it is k = 5. The magnetic
field totally changes the geometrical nature of the mode. One
can note that for magnetic fields above1.1 kG the modè = 1,
m = 0 or m = 1 becomes undetectable for observers because
the spatial averaging of the componentk = 5 vanishes.
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Fig. 10.The same ratioηk for ` = 3 m = 0 (left) and` = 3 m = 1 (right) as function of magnetic field.

Fig. 11.The same ratioηk for ` = 3 m = 2 (left) and` = 3 m = 3 (right) as function of magnetic field.

Fig. 12.The same figure as the previous one but for` = 0 (left) and` = 2 m = 0 (right).

To the contrary, we can expect to see modes which are invis-
ible without a magnetic field, say with̀≥ 4, but for which in
the case of strongBp the dominant component is obtained for
k ≤ 3. This is the case of̀= 5, m = 1 as we can see on Fig. 14.
However, we should note that one cannot arbitrarily increase the
magnetic field because of the main assumption we made for the
magnetic layer, i.e. the plane parallel approximation. To be valid
the magnetic layer must be situated close to the top of the star.

WhenBp increases, the base of the boundary layer has to be
deeper (say for greater densities) in the star in order to the ratio
β (see Eq. 1) remains small to insure the decoupling between
acoustic and Alfv́enic modes. We give in Table 1 in Appendix
A several positions ofxfit for different values ofBp.

We also assumed small horizontal wave numbers in the mag-
netic layer compared with the radial ones. This assumption still
remains valid if the degree of Legendre function is not too large.
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Fig. 13.The same figure as the previous one but for` = 2 m = 1 (left) and` = 2 m = 2(right).

As the series Eq. 14 and Eq. 15 require higher orders when the
magnetic field increases, we have a limitation on the value ofBp.
In our case, the plots ofηk show that even in the case of magnetic
fields above1 kG the maximal amplitude is for small degrees
of Legendre functions, i.e.≤ 10, except for̀ = 2, m = 1 and
` = 3, m = 0 andm = 1 for which some polynomials of large
degrees have strong components in the expansions Eq. 14,15.
For the cases of̀ = 3 m = 0 and` = 2 m = 1 we stop the
calculations forBp = 1.0 kG andBp = 0.83 kG, respectively,
because they involve degrees larger than20 for higher magnetic
fields, and then are incompatible with the assumptions we made.

3.5. Contribution to pulsational damping

From the system of linearized equations Eq. A.1-A.4 in ap-
pendix A, one can derive an equation for energy conservation

(by multiplying with the complex conjugate of
→
ξ and integrating

over a given volumeV)

ω2
∫

M

∣∣∣∣→ξ ∣∣∣∣2 ρdV =∮
S

{(
δp−

→
ξ .

→
∇ p0 + ρ0Φ1

) →
ξ∗
}

.
→
dS

−
∮

S

{
1/4π

(→
B0 ∧

→
ξ∗
)

∧
→
B1

}
.

→
dS

+
∫

V

{ |δp|2
Γ1p0

+
→
ξ .

→
∇ lnρ0

→
ξ∗ .

→
∇ p0

}
dV

+
∫

V

{
ρ0Φ1

(
δp∗

Γ1p0
−

→
ξ∗ .

→
∇ lnρ0

)}
dV

−
∫

V

{
2Re

(
δp∗

Γ1p0

→
ξ .

→
∇ p0

)
+

|B1|2
4π

}
dV. (33)

This formula is useful for two reasons. First, it provides a way
to estimate the numerical precision of the frequencies (see in
Appendix C). Second, it can be used to find the angular location
of the damping zone. To do this, we take the imaginary part of
Eq. 33 and neglect the contribution of the magnetic field since,

Fig. 14. Ratio of the mode’s energyek for ` = 5 m = 1 divided by
the total energy

∑
k ek, as function of magnetic field. We see that for

Bp ≥ 1.7 kG this modè = 5 becomes detectable because its main
component isk = 1 m = 1

at rfit we haveβ � 1. Then, we get

2ωRωI

∫
Mfit

|
→
ξ |2dm =

Im

∮
Sfit

(δp + ρ0Φ1) ξ∗
rdS

+ Im

∫
Mfit

Φ1

(
δp∗

Γ1p0
− ξ∗

r

∂lnρ0

∂r

)
dm.

Neglecting the effect of the gravitational potential which is small
for high frequencies, one can write the imaginary part of the
frequency as

ωI =
∫

Im {g(rfit, cos θ)} d(cos θ) (34)

with,

g(rfit, cos θ) =
πr3

fit

ωR

p0q y∗∫
Mfit |

→
ξ |2dm

. (35)

Then, one sees that the imaginary part of frequency comes
from the imaginary part of the acoustic fluxδpξ∗

r through the
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Fig. 15.Plots of the imaginary part of the functiong(rfit, cos θ) for different magnetic fields (0.5 − 1.1 kG) for two modes̀ = 1 m = 0 (left)
and` = 1 m = 1 (right) corresponding to the modes in Fig. 6. The full curves correspond to an increasingωI with Bp whereas the dot-dashed
curves correspond to a decay ofωI with Bp.

fitting surface.g(rfit, cos θ) corresponds to this flux normal-
ized by the inertia of the mode. One can verify in Fig. 15 that
Im {g(rfit, cos θ)}, first, depends onθ, but its contribution to
ωI comes from a region located essentially betweencos θ ≈ 0.4
and the magnetic polecos θ = 1. The location of the maximum
of this functionIm {g(rfit, cos θ)} depends on the value ofBp:
one sees in Fig. 15 (a) that the maximum is forcos θ ≈ 0.6 for
Bp ≤ 0.8 kG, i.e. for cos θ0 defined in Sect. 2.1, whereas for
Bp ≥ 0.9 kG the maximum is forcos θ ≈ 0.85 which corre-
sponds to an extremum of the Legendre polynomialP 0

5 . We find
again that the presence of the mixing of spherical harmonics de-
scribed in Sect. 3.4. One can check in Fig. 9 that the Legendre
polynomial of degree5 starts to dominate the angular geometry
of the modè = 1 m = 0 from Bp ≈ 1.1 kG. Note that even
in the case ofBp = 0.8kG (full line) one sees the contribu-
tion of P 0

5 with the second extremum ofg(rfit, cos θ) close to
cos θ = 0.85.

One sees that the integral of the functiong decreases from
Bp = 0.8 kG which leads to a decay ofωI , which corresponds
to the Fig. 6. For the case of the non-axisymmetric mode` = 1
m = 1, we find the same kind of results, except that forBp ≥
0.9 kG the maximum of the functiong is for cos θ ≈ 0.75.

4. Conclusion and discussion

We have investigated the influence of a strong magnetic field on
stellar oscillations in the case of Ap stars. With our model of
M = 1.8M�, R = 1.5M� andXc = 0.7, we find that forBp

smaller than 0.8-0.9 kG the magnetic field has a damping ef-
fect on p-modes oscillations which increases withBp, whereas
above 0.9 kG this damping effect decreases withBp. The real
part ofν is shifted up to 20µHz from its non-magnetic value.
The imaginary part which comes from Alfvénic wave losses,
produced in the magnetic layer, has values up to 15µHz. More-
over, these results depend on the geometry of the mode, particu-
larly on the azimuthal degreem. The degeneracy of frequencies
is, then, partially raised by the magnetic field. The real part, for
non-axisymmetric oscillations, increases withm and is always

greater than for the casem = 0. The imaginary parts are greater
than in the axisymmetric frequencies, except for sectoral modes
which are less damped than in the axisymmetric case.

We also showed that the magnetic field complicates the iden-
tification of modes, especially when the the value ofBp becomes
of the order of0.8 − 1.0 kG, because of the angular mixing of
solutions in the interior. This effect also depends on the value
of m.

The aim of this work was to show the modifications of fre-
quencies due to a strong magnetic field. That’s why we used a
very simple stellar model of oscillations, neglecting other im-
portant processes in those stars such as non-adiabatic processes
and the effect of chemical diffusion. The computation of more
realistic frequencies needs to take into account these effects.

In this paper we have considered the direct effect of the
magnetic field on the oscillations. It cannot, however, explain
the observed preference for dipole modes (` = 1, m = 0) in
roAp stars, since, in the case of our calculations and hypothe-
sis, they do not minimize energy losses due to Alfvénic waves.
Thus, the explanation of mode selection remains a challenge to
theory. Another piece of observational evidence is that chemical
diffusion occurs in Ap stars. The idea that chemical spots play
a role in the selection is not new (see Dolez et al. 1988). To this
effect to work we postulate that there is hydrogen in excess in
the polar region. This is different from that in Dolez et al. (1988)
because they expected mostly Helium driving. However, it has
been shown by Dziembowski & Goode (1996) and Gautschy
et al. (1998) that only the kappa-mechanism in the hydrogen
ionisation zone can explain high frequencies excitation in roAp
stars. Therefore, p-modes could be more excited at the pole than
at the equator. This configuration could explain that modes are
aligned with the magnetic axis.

Appendix A:

The aim of this appendix is to explain in a detailed way how to
obtain the boundary conditionF(θ, ω, m).
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A.1. Set of equations

The full set of linearized ideal MHD equations in the case of
adiabatic oscillations is

— the equation of motion

− ρ0ω
2

→
ξ = − →

∇ P1 + ρ1
→
g0 +

→
∇ ∧

→
B1

4π
∧

→
B0 (A.1)

— the conservation of mass

ρ1 = − →
∇ .(ρ0

→
ξ ) (A.2)

— the adiabatic condition
δp

p0
= Γ1

δρ

ρ0
(A.3)

— the equation of induction
→
B1=

→
∇ ∧(

→
ξ ∧

→
B0) (A.4)

where the quantitiesP1, ρ1,
→
B1 denote the Eulerian perturba-

tions of the pressure, density and the magnetic field, andδp,
δρ denote the Lagrangian perturbation of the pressure and the
density. The temporal dependence is assumed to be∼ eiωt. The

displacement
→
ξ and the Lagrangian perturbation of pressure are

given by Eq. 3 and Eq. 4. As we consider high frequencies, we
adopt the Cowling approximation, i.e. we neglected the pertur-

bation of the gravitational potential,
→
g1=

→
0 .

In order to simplify this system of equations, we have made
several assumptions. First, we assumed large radial wave num-
bers, therefore,
∂X

∂x
� X (A.5)

whereX is any perturbed quantity. More, we suppose that hori-
zontal wave numbers are small compared with radial wave num-
bers, ie
∂X

∂x
� ∂X

∂θ
. (A.6)

We also assumedx ≈ 1. The result for the Lorentz force with
these approximations is given by Eq. 6-8. After simplifications
thanks to the previous assumptions and a little algebra, we get
the following system

dy

dx
= − q

Γ1
− w̃

sin2 θ
(A.7)

dq

dx
= V { w̃

sin2 θ
+ q + c1σ

2(y(1 +
tan2 θ

4
) − h

2 cos2 θ
)}
(A.8)

dh

dx
= f̃ − w̃

2
(A.9)

df̃

dx
=

c1ασ2

3 cos2 θ
(y

sin2 θ

2
− h) (A.10)

dw̃

dx
= g̃ +

m2h

2 cos2 θ
(A.11)

dg̃

dx
=

c1ασ2

3 cos2 θ
(−w̃ − m2

c1V σ2 (q + yV )). (A.12)

A.7 is the equation of continuity, A.8 the equation of motion
on

→
er, A.10 the equation of motion on

→
eθ, A.12 the equation of

motion on
→
eφ. A.9, A.11 have been introduced to get a system

of differential equations of the first order.
The following variables have been introduced

h = y
sin2 θ

2
− z cos θ sin θ (A.13)

w̃ = im sin θw (A.14)

and

α =
12πGM

B2
pR

ρ0 =
3V

βΓ1
(A.15)

with β defined by Eq. 1.
V andc1 are defined by

V = −dlnp

dlnr
=

ρ0g0r

p0
c1 = 3x3 M

Mr
. (A.16)

We also introduced the dimensionless frequencyσ by

ω2 = 3
GM

R3 σ2 (A.17)

with the range of frequencies we consider in this paper
[1200,2300]µHz, it corresponds to a range of [10,19] forσ.

We see that the system Eq. A.7-A.12 is singular at the pole
and the equator. These two limit cases needs a special treatment
(see Appendix B)

The upper and lower boundaries of the magnetic layer de-
pend, as expected, on the value of the photospheric magnetic

field Bp. For the top of this layer, we required that
→
B1 tends to

vacuum field (α → 0) asρ tends to zero. Therefore, we can put
the right hand side of Eq. A.10 and Eq. A.12 equal to zero. This
requires us to extend the atmosphere sufficiently high to have
low density and then verifyασ2 � 1. At the base of the mag-
netic layer we need two conditions. The first one corresponds to
a negligible magnetic pressure compared with the gas pressure;
for this we requireβfit � 1. The second condition concerns
Alfv énic waves. We require that their wavelengths are much
shorter than the pressure scale height, i.e.ασ2 � V 2. We give
in Table 1 several values ofα at the top and the base of the
magnetic layer.

The general solution vectorS = (y, q, h, f̃ , w̃, g̃) of this
system can be written as a linear combination of six linearly
independent solutions. However, we assume that the star is an
isolated system, i.e. we reject inward propagating waves which
could come from infinity. Hence, this reduces our solutions to
three inside the magnetic layer

S = C1S1 + C2S2 + C3S3. (A.18)

There are two steps in the numerical integration. The first one
consists of finding the three peculiar solutionsSi for each radial
positionx in the magnetic layer. To do this, we start from the top
of the layer with analytical peculiar solutions which are found
thanks to a local analysis. We then integrate them numerically,
with a method of Runge-Kutta, through the magnetic layer to the
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Table A.1. Limits of the magnetic boundary layer for different values of the magnetic fields, and in each case, the value of the two parameters
α andβ describing the importance of the magnetic field.

Bp (kG) xfit xtop αfit αtop βfit βtop

0.5 0.9867 1.00152 0.989105 0.18310−3 0.47810−2 0.107106

1.0 0.9816 1.00123 0.616105 0.18610−3 0.58010−2 0.891106

1.5 0.9773 1.00107 0.503105 0.18410−3 0.58810−2 0.900108

2.0 0.9732 1.00094 0.454105 0.18810−3 0.55710−2 0.877108

base (x = xfit). The next step of the numerical integration is to
find the coefficients of the linear combinationCi. This is done at
the base of the boundary layer adding another condition. Since
at xfit one hasβ � 1, we assumed a full decoupling between
p-modes and Alfv́enic modes beneath the magnetic layer. We
add also the condition that there are only inwards propagative
Alfv énic waves under the magnetic layer (see also Roberts &
Soward 1983). Then the solution at the base of the magnetic
layer has the following form

S = CpSp + C1
AS1

A + C2
AS2

A. (A.19)

The Alfvénic solutionsS1,2
A are obtained with a WKBJ method.

The components ofSp at the fit only depend on the two vari-
ablesyp andqp. (see below). Therefore, the unknown quantities
areC1, C2, C3, C

1
A, C2

A andCp which are found matching the
solutions Eq. A.18 and Eq. A.19. This leads to a linear homo-
geneous system of equations which has non trivial solutions if
the secular determinant is zero. This condition gives the rela-
tion betweenqp andyp at x = xfit, that is to say the boundary
conditionF(θ, ω, m).

A.2. External boundary conditions

We adopted here a local analysis of the system assuming that
the coefficients of the system Eq. A.7-A.12 are constant (we
assume to be in an isothermal atmosphere). The solutions have
the formekx. This gives a relation of dispersion

k2(k2 − V k +
c1σ

2

Γ1
(1 +

tan2 θ

4
))(k2 +

m2

4 cos2 θ
) = 0.

(A.20)

One gets three groups of solutions. As said before, we keep only
outward propagating or decreasing waves in the atmosphere.
The solution may be written as

S(top) = C1S1(top) + C2S2(top) + C3S3(top). (A.21)

The three remaining solutions correspond to three different
waves numbers of Eq. A.20.

The first one is

k1 =
V

2

(
1 −

√
1 − σ2

σ2
ac,0

(1 +
tan2 θ

4
)

)
(A.22)

σac,0 being the dimensionless non-magnetic acoustic cut-off
frequency and is given by

σac,0 =
√

Γ1V

4c1
. (A.23)

The corresponding vector solution can be written as followed

S1(top) = (1,−Γ1k1, 0, 0, 0, 0) (A.24)

where we choose the normalization conditiony1 = 1. The sec-
ond type of solution obeys the condition

k2 = 0. (A.25)

This gives a second vector (withh = 1)

S2(top) = (2/(3 cos2 θ + 1), 0, 1, 0, 0,−m2/2 cos2 θ). (A.26)

For the last vector corresponding to the wave number

k3 =
−im

2 | cos θ | (A.27)

one can choose withm /= 0 (with w̃ = 1)

S3(top) = (A.28)

(
−i cos θ

m

2
3 cos2 θ + 1

,
Γ1

3 cos2 θ + 1
− Γ1

sin2 θ
,
−i cos θ

m
, 0, 1, 0).

Next, each component of the vectorS is integrated by a method
of Runge-Kutta of the fourth order with adapted step size. The
result is the valuesS1(fit), S2(fit) andS3(fit).

A.3. Inner boundary conditions

To obtain the expression for these coefficients, we require new
conditions at the base of the magnetic layer. In this part of the
star, the ratioβ is very small. This means that the Alfvénic speed
is negligible compared with the sound speed. Since the two
perturbations ofB andp, say the Alfv́enic waves and pressure
waves are propagating with very different speeds, it appears a
decoupling between the two. Mathematically, this decoupling
appears in the system Eq. A.7- A.12 because of the small value
of η = 1/(ασ2). Then, a solution of the system Eq. A.7-A.12
can be written as

S(fit) = CpSp + C1
AS1

A + C2
AS2

A. (A.29)

The subscript “p” refers to the p-mode solution, whereas the
subscript “A” corresponds to the Alfv́enic solution. Since, the
effect of the magnetic field is very small below the magnetic
layer, we can again use a perturbative approach to find the so-
lutions.
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A.31. p-modes solution

This corresponds to the zeroth-order of perturbation,η = 0.
Then, Eq. A.7-Eq. A.12 reduces to

hp =
sin2 θ

2
yp w̃p = − m2

c1V σ2 (qp + ypV ) (A.30)

dyp

dx
= − qp

Γ1
(A.31)

dqp

dx
= V {qp + c1σ

2yp} (A.32)

where we neglected the terms due tõwp since they are small
compared withyp andqp as we can see on Eq. A.30. This sys-
tem corresponds to the system of equations in the case of non-
magnetic and adiabatic radial oscillations (in the Cowling ap-
proximation).

we obtain

f̃p = − sin2 θ

2Γ1
qp (A.33)

g̃p = −m2(
1

c1σ2 (1 − 1
Γ1

)qp + (1 +
tan2 θ

4
)yp). (A.34)

Then, we can write the vector solution for p-modes as function
of yp andqp.

Sp =
(
yp; qp;hp; f̃p; w̃p; g̃p

)
= yp

(
1, 0,

sin2 θ

2
, 0,

−m2

c1σ2 ,−m2(1 +
tan2 θ

4
)
)

+ qp

(
0, 1, 0,

− sin2 θ

2Γ1
,

−m2

c1V σ2 ,
−m2

c1σ2 (1 − 1
Γ1

)
)

. (A.35)

A.32. Alfvénic modes

This corresponds to the first order of perturbations inη. We
suppose for Alfv́enic waves thaty � h, w and alsod/dx � V .
The system governing the Alfvénic waves is

d2hA

dx2 +
1
2

dw̃A

dx
= − c1ασ2

3 cos2 θ
hA (A.36)

d2w̃A

dx2 − m2

2 cos2 θ

dhA

dx
= − c1ασ2

3 cos2 θ

(
w̃A +

m2qA

c1σ2V

)
(A.37)

dqA

dx
= V

(
w̃A

sin2 θ
− c1σ

2

2 cos2 θ
hA

)
. (A.38)

To solve this system we use a WKBJ approach with the form

hA, w̃A ∼ exp

{
i
∫ x

kdx

}
(A.39)

k obeys the following relation of dispersion

(
k2

A − k2)(k2
A − k2 +

m2

4 cos2 θ

)
= 0 (A.40)

with

kA =

√
c1ασ2

3 cos2 θ
� 1. (A.41)

We keep only solutions which propagate inwards. One has, then,
two kinds of solutions

– solution withk = kA

S1
A = (0,

iV c1σ
2

2kA cos2 θ
, 1, ikA, 0,

−m2

2 cos2 θ
) (A.42)

– solution withk =
√

k2
A + m2/(4 cos2 θ)

S2
A = (

iV c1σ
2

Γ1km2 ,
V c1σ

2

m2 ,
−2ik cos2 θ

m2 ,
2 cos2 θk2

A

m2 ,−1, 0).

(A.43)

Then, at the base of the magnetic layerx = xfit the inner bound-
ary condition write as

CpSp + C1
AS1

A + C2
AS2

A = C1S1 + C2S2 + C3S3 (A.44)

can be written as the following system of algebraic linear equa-
tions

y1 y2 y3 −y1
A −y2

A −yp

q1 q2 q3 −q1
A −q2

A −qp

h1 h2 h3 −h1
A −h2

A −hp

f̃1 f̃2 f̃3 −f̃1
A −f̃2

A −f̃p

w̃1 w̃2 w̃3 −w̃1
A −w̃2

A −w̃p

g̃1 g̃2 g̃3 −g̃1
A −g̃2

A −g̃p




C1
C2
C3
C1

A

C2
A

Cp

 = 0.(A.45)

The solutions with the subscripts 1, 2, 3 are the values atx = xfit
after integration in the boundary layer, and the solutions with
the subscript “A” are given by Eq. A.42 and A.43. Requiring that
the determinant of the matrix in Eq. A.45 is zero, one obtains
the functionF(θ, ω, m).

Appendix B:

The results presented in the previous section are not valid at the
pole (θ = 0) and the equator (θ = π/2) because of the singular
behaviour of the equations. For these two points we need to find
two systems of equations.

B.1. The pole

At the pole the Lorentz force vanishes. Therefore, the system
of equations reduces to the second order Eq. A.30-A.32 (i.e. the
system for radial p-modes in the non-magnetic and adiabatic
case)

B.2. The equator

At the equator the Lorentz Eq. 6-8 gets a simpler expression

Lr =
3V P0

4αR

(
d2y

dx2 + im
dw

dx

)
(B.1)

Lθ = 0 (B.2)
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Fig. C.1. Relative differences between the numerical solution for the real frequency (left) and the imaginary frequency (right) with the frequency
calculated with Eq. C.1 and Eq. C.2; for the mode` = 1, m = 0 (full) and ` = 1, m = 1 (dashed) in Fig. 6.

Lφ =
3V P0

4αR
im

dy

dx
. (B.3)

It can be shown that the system at the equator reduces to the
second order

dy

dx
=

−q

Γ1

(
1 − m2Γ1

c1σ2V

A

B

)
+

m2

c1σ2

y

B
(B.4)

dq

dx
=

V q

A

(
1 − m2

c1σ2V

A

B

)
+

c1σ
2V y

A

(
1 − m2

c2
1σ

4B

)
(B.5)

with

A = 1 +
3V

4αΓ1
(B.6)

B = 1 +
3m2

4c1σ2α
. (B.7)

Appendix C:

The formula Eq. 33 provides a good test for numerical calcu-
lations. Once the numerical solution is found the eigen vectors
are injected in the following formulas Eq. C.1-C.2 which leads
to another evaluation of the frequencies. We neglect the terms
corresponding toB since the eigen frequencies corresponds to
the oscillations belowxfit, i.e. where the dynamical effect ofB
is negligible compared with the effect of gas pressure.

We give hereafter the formulas forνR andνI obtained by
taking the real and the imaginary part of Eq. 33.

4π2ν2
R

∫
M

∣∣∣∣→ξ ∣∣∣∣2 dm =

Re

(∮
S

(
δp−

→
ξ .

→
∇ p0 + ρ0Φ1

)
ξ∗
rdS

)
+ Re

(∫
V

{ |δp|2
Γ1p0

+
→
ξ .

→
∇ lnρ0

→
ξ∗ .

→
∇ p0

}
dV
)

+ Re

(∫
V

{
ρ0Φ1

(
δp∗

Γ1p0
−

→
ξ∗ .

→
∇ lnρ0

)}
dV
)

−
(∫

V

{
2Re

(
δp∗

Γ1p0

→
ξ .

→
∇ p0

)}
dV
)

(C.1)

8π2νRνI

∫
M

|
→
ξ |2dm = W1 + W2 + W3 + W4 (C.2)

with

W1 = Im

∮
Sfit

(δp) ξ∗
rdS (C.3)

W2 = Im

∮
Sfit

(ρ0Φ1) ξ∗
rdS (C.4)

W3 = Im

∫
M

Φ1

(
δp∗

Γ1p0

)
dm (C.5)

W4 = −Im

∫
M

Φ1

(
ξ∗
r

dlnρ0

dr

)
dm. (C.6)

The relative differences between the numerical solutions ofνR

andνI with the frequencies calculated with Eq. C.1 and Eq. C.2
are given in Fig. C.1. We see that the consistency of the calcu-
lation are better than10−5 for the real part and better than0.01
for the imaginary part, for the modè= 1 m = 0 andm = 1.
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