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Abstract. We calculate the effect of a strong dipole magnetigtars is the presence of a strong magnetic field of about kilogauss
field on non-axisymmetric oscillations for roAp stars, with amplitude, discovered first by Babcock (1947). It has roughly a
typical range of photospheric magnetic fields [0.5-1.5] kG. dipolar geometry, see Borra et al. (1982).
As Dziembowski & Goode (1996), we find that the oscillations From the asteroseismological point of view, these roAp stars
are strongly affected by such magnetic fields in two differencbnstitute a specific class of variable stars: they oscillate with
ways. The first one concerns the stability of modes, which dnggh frequencies, say with large radial orders from 10 up to
damped due to dissipation by ABmic waves. It leads to a smallabout 30. This represents a range of periods from 6 to 14 min-
imaginary part of the frequency, about (1t1532). The real utes, similar to the 5-minute oscillations of the Sun, but with
part of the frequencies is also affected and is greater in timeich higher amplitude light variations (abdunmag). Recent
presence of magnetic field, with a shift of about 1t28~>. We discoveries by Martinez (1999) and Martinez et al. (1999) show
find that these shifts are strongly influenced by the geometrypaissible long periods of 30 and 29 min, in two roAp stars, HD
the mode, i.e. the value of the deggas it has already been75425 and HD 13038 respectively. However, as in most cases,
shown by Dziembowski & Goode (1996), and alsorhythe roAp stars have rapid light variations, we assume, in this pa-
azimuthal degree, with a significant amplitude. The magneper, high frequencies for oscillations. Another particularity is
field, because it breaks the spherical symmetry of the probletime geometry of these oscillations, which are aligned with the
raises partially th¢2¢ + 1) degeneracy of frequency in. We magnetic axis. They appear essentially as dipole modes, char-
find that the shift of both the real and imaginary parts is alwagsterized by a spherical harmonic whose degree-s1 and
greater than in the case of axisymmetric oscillations=€ 0), an azimuthal degree» = 0, say with the same geometry as
except for sectoral modeg & m), for which the imaginary the magnetic field. Reviews on roAp stars are available in Kurtz
part is smaller. The second effect of large magnetic fields is(®90) and Matthews (1991). Recent theoretical works about
complicate the mode identification. The perturbations cannottw\p stars are discussed in Cunha (1998).
represented by pure single spherical harmonic, but by a series ofAny seismological study of roAp stars must take into ac-
harmonics due to the angular dependence of the Lorentz foroeunt the presence of this strong magnetic field. A lot of studies
Itis shown that this mixing of spherical harmonics also depentdave been done to explain the seismological observations of
on the value ofn. However, our calculations do not explain théhese objects. However, they have been limited to the linear
observed selection of dipole modes in roAp stars, aligned wiind adiabatic approximations. Even in this case, the difficulties
the magnetic axis, since they do not minimize energy losses dlug to the magnetic field remain numerous. Roberts & Soward
to Alfvénic waves. (1983) developed analytical solutions of the problem but for
polytropic star models and for a weak magnetic fietd .1
Key words: stars: magnetic fields — stars: oscillations — starkG), whose angular dependence has been neglected. They in-
chemically peculiar — stars: interiors troduced the concept of the magnetic boundary layer and the
possibility of Alfvénic wave production as a source of damping
for p-modes. Campbell & Papaloizou (1986) considered nu-
1. Introduction merically the general problem, taking into account the angular
dependence of the Lorentz force, still in the case of polytropic
The roAp stars are a special subgroup of Ap stars which shaypdels. However, they solved the problem for each colatitude.
rapid light variations. Since their discovery by Kurtz (1982)rhe global problem was first treated by Dziembowski & Goode
their number has grown to about 30. They are cold Ap stgm96), who considered non-radial axisymmetric stellar oscilla-
(Te s~ 8000K) having anomalous surface element abundanagsns, with strong magnetic fields still in the case of the magnetic
of Sr, Cr and Eu. With a mass of about\Z, they lie in the poundary layer concept. They have shown that the frequencies

HR diagram at the intersection between 8h8cuti instability are shifted by the magnetic field in a range of 10429z, for
strip and the main sequence. One important particularity of these




L. Bigot et al.: Non-axisymmetric oscillations of roAp stars 219

the real part of the frequency, add- 10p.H = for the imaginary proximation, i.e. we neglect, locally, the curvature of the star.
part due to Alfenic waves. They also showed that the modéssuming that the horizontal wave number remains small com-
of oscillations are not pure single harmonics but a mixing gared with the radial wave number, i.e. for small valueg.of
them due to the angular dependence of the Lorentz force We neglect the derivatives with respect to the colatitéder
side the magnetic layer. These results are consistent with the perturbed quantities. Matching the solutions of the magnetic
observations of HR 3831, whose frequency spectrum has bégrer with the solutions of the deep interior, i.e. corresponding
described by Kurtz (1992) as a sum of spherical harmonicstofnon-magnetic oscillations, one obtains the eigen frequency
low degrees. Recently Cunha & Gough (1998) presented spectrum of the star.
alternative approach based on degenerate perturbation theory.

The aim of the present paper is to generalize the work gf ;
Dziembowski & Goode (1996) to non-axisymmetric oscilla-g'l' The magnetic layer
tions, i.e. with the possibility of azimuthal dependence of mod¥¢e divided the magnetic layer into a mesh in the colatitéide
and for magnetic fields up th5 kG. We still use the same as-and we solved the MHD system of equations for each colatitude
sumptions: we neglected non-adiabatic processes, like excjtaint with this plane-parallel approach.
tion, radiative damping, coupling with convection, and the effect The magnetic field is assumed to be dipolar which is a good

of rotation. approximation for Ap stars (Borra et al. 1982)
—~ B, — sind -
2. The magnetic boundary layer approach Bo= ﬁ(cose er T €o) (2)

In the presence of a magnetic field the full set of equations debeing the dimensionless radial positian=£ r/R).

scribing stellar oscillations is very complicated to solve because In our non-axisymmetric treatment, the displacement is
of the Lorentz force. Hence, we adopted the concept of a magven by

netic boundary layer used in previous papers dealing with this

problem, (Roberts & Soward 1983; Campbell & Papaloizo = r{y(z,0) e, +2(z,0) eg +w(x,0) ey} P! (3)
1986; Dziembowski & Goode 1996). Although the magnetic . ) ] ]

field is strong everywhere inside the star, the Lorentz force H48€réw is the pulsation of the acoustic mode the azimuthal
an influence on the dynamics of the oscillations only in tHder ands the longitudinal angle. Another unknown quantity
outer parts, where the density becomes so small that the migghe relative perturbation of the pressure

netic pressure is of the same order as (or larger than) the g8s

pressure. b q(z,0)emPet, ()
Let us define the ratio
B2 ) The Eulerian perturbation of the Lorentz force in the case of
__r _ Y (1) MHD approximation is
4rlip %

— — — — ) — — — —
I'; is the adiabatic exponentthe unperturbed gas pressurg. L=1/4n(V A B)A By with  Bi=V A(€ A Bo) (5)

andcs are respectively the Alﬁrnic and sound speeds, aBd |, the magnetic layer we neglected all the derivatived bgm-
the photospheric magnetic field (0.5-1.5 kG). ~ pared to the derivatives hyand we assumed large radial wave
We can divide the star into two regions. The magnetic prégympers, since we study high frequency oscillations. Then one

sure is neglected compared with the gas pressure in the Wl‘t%?s the following form for the Lorentz force
star (where? < 1), exceptin the very thin layer near the photo-

sphere wher@ > 1. This thin layer, wherg is non-negligible Bf, 0%h . sinf ow

compared with the unit, is called the boundary magnetic Iayé?; = SrR (89@2 + im—— (%> (6)
Inside this layer, there are no pure p-modes but rather the so-

called magneto-sonic modes whose properties are a mixture of Bg 0*h . sinfow

acoustic and Alfénic modes. The bottom of this layef, is ¢ — _47TRCOtan9 (812 + 1m28:c> Q)
chosen where the quantigyis sufficiently small to neglect the

magnetic pressure and to provide a decoupling between p-modes Bg im Oh o, . 0%w

and the magnetic field (see Table 1 in Appendix A). Then, & = 1-Rind (Q@x o8 0s1n98x2> (8)
find the eigen-modes of the star, we must solve two systems

of equations. Inside the star (< r4¢), we solve the system where

for adiabatic p-modes oscillations without a magnetic field, de- sin?

scribed for example in Unno et al. (1989). In the magnetic layér= y — zsinf cos 6. (9)

we integrate the complete system of ideal MHD equations still

in the case of adiabatic oscillations (see appendix A). The ddthe case of non-axisymmetric oscillatiods, is not equal to
vantage of this method is that, since this layer is very thin a@éro, therefore the full system to solve contains the equation of
situated at the top of the star, we can adopt a plane-parallel amtion projected o. Then, this system for adiabatic motions
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Fig. 1. (left)Real part ofF (6, w, m), (right) the imaginary part of-(6,w, m) as functions otos # for frequencies corresponding to a mode
such as = 24, £ = 1 and for two values ofn: m = 0 (full line) andm = 1 (dashed line). The magnetic field&, = 0.7 kG.

which was of the fourth order in the axisymmetric case (seerresponds to a null wave number and flo= 6,. Then, for
Dziembowski & Goode 1996) becomes of the sixth order (saegiven frequency we have two regions in colatitude: from the
in Appendix A). pole tod, the acoustic waves are reflected whereasfotro

We assume small perturbations which leads us to linearibe equator they are partially propagating. This change of the
these equations. More details about this system are given in Apede’s nature has a signature in the behaviour of the function
pendix A. The result of this integration in the magnetic layef; (6, w, m). In the case of Fiiltos 6y ~ 0.6.
with adequate boundary conditions at the top of the star, leads Note thatv,. is equal to the non-magnetic frequenagy. o
to the ratioF (0, w, m) betweeny, andy, the Lagrangian per- at the pole, and is smaller than. , everywhere else. For the
turbation of pressure and the radial displacement for p-modmsiting case of the equator, it is equal to zero: therefore, there
atwg; are no trapped waves at the equator.

qp(xﬁta 9) = ]:(07 w, m)yp(xﬁ‘m 9) (10)
2.2. The interior

This relation is then used as a boundary condition to solve nu-
merically the classical system of equations, say without a magpllowing Roberts & Soward (1983), there is a full decoupling
netic field, for the inner part of the star,< zg;. The function between Alfenic and acoustic modes far < zg;. This de-
F(6,w, m) only depends on the absolute valuenef because coupling is recovered from EQ.AN0 ahd A.12 in Appendix A
of the azimuthal symmetry of the unperturbed magnetic fieldecause of the small value gf The Alfvénic modes are as-
Therefore, the perturbations of the frequencies, due to the magmed to be dissipated well before the center of therstar.

netic field, will depend also on the absolute valuerof A WKBJ treatment has been adopted to find them.

In Fig[d, we can see two plots of the functigiwhich repre- The p-modes are described by the system of equations with-
sentits real and imaginary parts, for a given radial order24.  out a magnetic field, as presented in Unno et al. (1989), whose
We see that this function depends nn for both the real and solutions arey,, g, the radial displacement and the Lagrangian
the imaginary parts. This implies that the corresponding eigparturbation of the pressuréis the degree of the spherical har-
frequencies will also depend on. The angular dependence ofmonic Y;* = P/e'™?. However, as the boundary condition
F in @ is influenced by the angular dependence of the “acous{f, w, m) depends orf, the solutions are no longer repre-
tic cut-off frequency”, i.e. the maximal frequency for trappedented by a singl&,™, but by linear combinations of associated
p-modes. It follows from the expression [Eq.A.22 in Appendikegendre functions,

A that this frequency is

nnl

cs 1 1) Yp(2,0) = (D Dimyn(z) Pl (cos 0)) (14)

Wae = ﬁ W k=m
nnl
with H the pressure scale height. Note from[Eg. A.22 that when m
P 9 Gp(@,0) = (3" Dymar ()P} (cos ). (15)
tan? 0 > tan? 6, (12) k=m

UJ2

20 ) cs Dy, represents the coefficient of angular mixing, it corresponds
2 L] with weeo = o (13)  to the “weight” of eachP™ in the sum.nnl is the maximal
degree of the Legendre functions in the series.

the acoustic waves, at the top of the boundary layer, become The effect of magnetic field on p-modes, in the interior, is

partially propagating in the atmosphere. The equality il El. #2scribed through the coefficient.,, .

tan? 6y = 4 (
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Fig. 2. Shift of the real part (left) and the imaginary part (right) of a set of non-magnetic frequengifs several degreesin the case of
axisymmetric oscillations. These two sets of curves are plotted fay kG magnetic field.

Then, the upper boundary condition Egl 10 becomes, L is the luminosity of the star andl. the hydrogen fraction at
the center. This model has been obtained using usual assump-
tions for stellar structure and also neglecting all the processes

nnl

D Din{ax(@a)due = yi(wa) From(@)} =0 (16) of chemical diffusion.
k=m We found for the non-magnetic acoustic cut-off frequency
with, (assuming an isothermal atmosphere)

S 9796.27uH . (19)

1 Vge.0 =
Frok!om = 471'/ P (cos 0)F(0,w, m) P (cos 8)d(cos 0) 07 4l
0 v denotes the cyclic frequency. Hereafter, we will consider only
(17)  high frequencies, i.e. from abol200 1. H = to abou2300 pH z,
i L which represent a typical range of observable frequencies (i.e.
We use here the following normalization foj™, radial numbers from abou to 24).

/Yk (Y : ) d(c0s 0)dd = Oxx dm: (18) 3.2. The magnetic shift of frequencies

with d,- the Kronecker symbol. The calculations show that the magnetic field leads to a shift
The relation in EQ16 (wittt’ taking the same values &y Of the real part of the frequency, denoted Ayr, and also

is a homogeneous system whose solutions are the coefficigfigates a positive complex component The imaginary part

Dy Its discriminant has to be equal to zero for eigen frequegemes from the coupling between p-modes and the magnetic

cies (for non-trivial solution®;,,,). This last condition is used field inside the boundary layer. A part of the p-mode’s energy

to find the frequency spectrum of the star. is then converted into Alfenic waves inside this layer, which
BecauseF (6, w,m) is even incos # (see the system in ap-are dissipated beneath this layer, in the interior (see for instance

pendix A; it only depends oeos? 6), the functionFy ., does Roberts & Soward 1983). Therefore, we can write the frequency

notvanish if andk’ have the same parity. In order to have a norif the following form

zgro]—‘kkl}m, one must choose'for the series[Ed. 14 and Eq. 15 vo(n, €) + Avg(n, €,m, By) + i vi(n, £, m, B,) (20)

either only odd-Legendre functions or only even-Legendre func-

tions, according to the parity of the degr&e.e. the degree of with v the frequency without a magnetic field. In the asymptotic

the mode without a magnetic field. As we putl = 36, we limit (for large n) the non-magnetic frequency is related to the

have then]8 terms in the series EG.1[4915. radial order by
L
vo(n,€) = Arg(n+ = +¢€) (21)
2
3. Results . )
with n the radial order and a constant of the stellar model.
3.1. The model The large separatiofAvy is
The results presented in this paper have been calculated with R g, -1
the following stellar model Ay = 2/ — ~ 87.2uHz. (22)
o cs(r)
Model M/Ms R/Rgo logL/Le X The results are presented in EijJ2-5. We note that the effect of

1.8 1.531 1.029 0.70 the magnetic field, i.e. the frequency shift, increases with the
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Fig. 3. Shift of the real part of the frequency (Re-vo) (left) and the imaginary part (right) as functions of the non-magnetic frequendgr
a given degreé = 1, and its corresponding valuesf, herem = 0 andm = 1. These two curves are plotted foha kG magnetic field.
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Fig. 4. Shift of the real part of the frequency (left) and the imaginary part (right) for a given dégte®, but for different values ofn: m = 0,
1 and2. These curves are plotted fofa&r kG magnetic field.

radial ordern, for both the real and imaginary parts. This idecause the unperturbed magnetic field is dipolar and, therefore,
explained by the fact that the effect of the perturbation, far frodoes not depend on the longitude (sedEq. 2).

the outer turning point, is small. Only modes which have fre- First, we have investigated the influence of the dedriee
guencies close to the critical cut-off frequency are significantlige case of axisymmetric oscillations = 0, in Fig.[d. In that
affected by the magnetic field. case, the typical range &vp is about5 — 18 pH z for high

However, the results we have obtained point out that thisertones, say > 2000 pH z and2 — 10 pH z for v;. We find
shift of frequencies strongly depends on the geometry of there the same order of magnitude as Dziembowski & Goode
mode, say the value dfandm which corresponds to the geo{1996) for axisymmetric oscillations but for a younger star’s
metric dependence of the Lorentz forc#iandm, see Eq.1638. model.

The m-dependence of the frequencies is a direct effect of For both the real and imaginary parts, we see a systematic
the magnetic field since it breaks the spherical symmetry of tifference between radial & 0) and non-radial modesg & 0);
problem (if we neglect the rotation). It leads then to a raisirfgr large frequencies the shift in the real pAnty is lower than
of the (2¢ + 1) degeneracy of the frequencies (see, for exaim the radial case, whereas the shift of the imaginary part is
ple, Eq[21). This effect is analogous to the Zeemann effectlarger, for any value of = 0 (and forv > 1800 pH 2).

Quantum Mechanics. However, it remains a partial degerBracy We have investigated how the magnetic effects on oscilla-
since the frequencies only depend on the absolute value oftions depend on the value ef. The results are presented in
Fig[313 for different values of and in each case for its corre-

! the degeneracy im is partially lifted because of the axisymmetrysponding values af: (m < [). Let us first examine the shift of
of the dipolar magnetic field: there is no difference between waves mékie real pari\vr. As a general result, non-axisymmetric oscil-
ing with the phase velocity, = wnim/|m| andvy = —w,um/Im|in  lations have greater real shifts of frequency than thecase0.
thee,, direction; they are affected in the same wayly. Therefore, More, one sees that for any value HfAvy always increases
it remains a partial degeneracy for the frequency which just depenttéh m. The modification of the frequency from the axisym-
on|m|. metric case is relatively important. For example, in Eig. 5, we
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Fig. 5. Shift of the real part of the frequency (left) and its imaginary part (right) for a given dégteg, but for different values ofn: m = 0,
1,2 and? = 3. These curves are plotted foDa8 kG magnetic field.
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note thatAryr which was about0 @ H z for m = 0 increases We see again that the behaviour of the frequencies with the
up to18 uHz in the casen = 1, for B, = 0.8 kG. magnetic field strongly depends on the geometrical nature of

We see, in Fig815, that the imaginary part, also dependsmiodes. For these graphs we extend the calculations U to
the value ofm. One notes that sectoral modés= m, have kG. We see that the damping of modes, i.g.passes through
smaller imaginary parts than axisymmetric modes, whereasnaximum. This maximum is obtained for a particulyy =
modes with¢ = m have larger shifts. The amplitude of theB,,.;; whose value depends on the parameters(e.g. for/ = 1
modifications introduced for non-axisymmetric oscillations, as = 0 B.,;; ~ 0.8kG). Such results have already been found
for the real part, is also important. As we can see Bpr= 0.8 by Dziembowski & Goode (1996) but for axisymmetric modes.
kG in Fig.[3,v; decreases fromh . H = (for v ~ 2000 H z) in  Note also the behaviour of the mode sucli asm = 1, whose
the casen = 0to abou.5 uH z for m = 3 and increases up to frequencies form a loop, due to the fact that for some magnetic
~ 11pHz in the case ofn = 1, say more than twice the valuefields 0.9 — 1.1 kG) both Avr andy; decrease.
of the axisymmetric case. The observed oscillations are interpreted in terms of the

These results showthatthe geometry and the stability of nablique pulsator model (see Kurtz 1982, and later improve-
axisymmetric oscillations are greatly influenced by the magients by Dziembowski & Goode 1985,1986; Kurtz & Shiba-
netic field. As a matter of fact, the imaginary part introduceaashi 1986; Shibahashi & Takata 1993) which states that the pul-
by magnetic processes is of the same order as the one dusation axis is nearly aligned with the magnetic axis and oblique
non-adiabatic effects (see for instance Dziembowski & Goowath the rotation axis. According to oblique pulsator model,
1996). the observed modes have, generally, a dipole geométey {

On Fig[8 and Fid.]7 we plot the imaginary part of the fres = 0). Our calculations do not explain this preference since
guency as a function of the real part, for several values of ttieir geometries do not minimize energy losses due toghlfy
magnetic fields3,,. waves. As a matter of fact, we see in [Eiy. 3 &hd 6 that in most
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of the cases the imaginary part is generally smallerfer 1  3.4. Angular geometry of modes
m = 1 than for the sectoral mode= 1 m = 0. The same is

largely true for other degrees. In this subsection we discuss the influence of the angular depen-

dence of the Lorentz force on the geometry of p-modes oscilla-
_ tions. As we have seen in the previous subsection, the bound-
3.3. Small separations ary condition for p-mode$ (0, w, m) depends ol which is a

. —
As we have seen in the previous sections, the real part of fHEect consequence of tifedependence of . We cannot rep-
frequency is shifted up t80uHz. This value is of the same resent a mode in the interior by a single spherical harmonic, as

order as the small separations in the non-magnetic limit, sayfor non-magnetic oscillations, but we need to expand the solu-
tionsy,, g, as a series of associated Legendre functiong, Eq. 14

St,n = Ven+1 — Vet2,n- (23) and Eq[1b. We saw that this angular expansion involved only
These separations, in the non-magnetic case, are widely influactions which have the same parity foand the same value
enced by the deep stellar interior. Consequently, they give useftin.
information about these regions and therefore an estimation of The calculations show that, whés), increases, the number
the stellar age. of terms with a significant amplitude in the series increases and
We see that the changes due to deep stellar structure (intthe“weight” of these terms, say the valuelof ,,, changes.
non-magnetic case) are of the same order as the magnetic shiftslhe contribution of these terms is found in the energy of the
of frequencies{ 15 — 20 pHz). The non-magnetic separa-mode. The kinetic energy ,, of a mode can be written as

tions are degenerate im, as the corresponding frequencies. ) 5
However, the magnetic field raises partially the degeneracy g?r _ YR / fl_)m pdV (25)
v and, therefore, the degeneracy for This implies that the 4 Jvae |

small separations in the case of non-axisymmetric oscillations
with magnetic field depend on the azimuthal degred_et us With the d|splacemengl m= 2 Dim §k .m and in spherical

define this separation by coordinates
mm’ _.m m’ - 8 8 iw
S&n = Ven+1 = Viran: (24) Ekm=T (yk (r)vyh,k(r)%> yzlz(e) 3¢) Y™ (0, ¢)e ! (26)
An example of this separation is given in Hig). 8, foe 0,¢ = 2
and/=1,¢=3. 1
(po(ar(r) + yk(r)V) + poP1k) (27)

We note, in these graphs, that the small separations do ot — 2 pow?
have the same behaviour with the magnetic field, dependin% ) . o
on the mode’s geometry. In the case of even degrees (, Where®, representthe Eulerian perturbation of the gravitational
¢ = 2) the small separations with/ # 0 are smaller than Potential.
the axisymmetric case and decrease with In the case of  SinceF;" form an orthogonal basis, we have
Od,d degrees/(= 1, ¢ = 3) we see thas", < SiT with T (28)

m’ =0, 1,2, 3. More, one can note that for a given valuenof
(i.e.0 or 1) the small separations decrease with the value’of

These results show that it is very complicated to get infofith,
mation on stellar structure in terms of these small separations,
because of the perturbations introduced by the magnetic fielek,m = TR|ka|2I/c (p) R° (29)

k
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separationaS{“?{g’ = Vi — ug'f{g form = 0,1 m' = 0,1,2,3. The dashed curves correspondsito= 0 andm’ = 0, 1,2, 3 and the full
curves corresponds ta = 1 andm’ = 0, 1, 2, 3. In both cases the heavy line is for the axisymmetric case.
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Fig. 9. We represent in the ordinate the ratio of the mode’s eneggyor £ = 1 m = 0 (left) and¢ = 1 m = 1 (right), divided by the total
energy _, ek, as function of magnetic field. The expression of this ratio is given in the text.

zfit .. .

_ U 9 9 However, the componenis = 3,7 get non negligible ampli-
L _/0 v a1 (Il + 5k + Dl pl) o (30) tudes whenB,, ~ 0.7 — 0.8 kG. And for B, = 0.89 kG the

) energies of the three componeiits= 1,3,7 are equal, each
with of them has about 30% of the total energy of the mode 1
dinM, -1 , . :

o din o = 323 (31) m = 1. Nonetheless, the componént= 5 also increases with

the magnetic field and becomes dominant £y > 1.1 kG.

dinr M,
We see that the presence of another component depends on the

(p) is the mean density of the star. In order to represent toglue ofm; see for example the caselof 2m — 1andm — 2
weight of each component of the total energy of the mode, il Fig.[I3. The values of the degrees, involved in this mixing,

plot the following ratio strongly depend om:; the casen = 1 has larger degrees for

Ck.m | Din | Zie the Legendre functions than the case= 2. One realizes that
Meym = 2 - S |1 Dim PTh (32)  the identification of modes is very difficult in the presence of

’ a strong magnetic field because the dominant component, and

Several plots ofy;, are given in Fid.B-13, as function of thethen its geometry, of a given mode depends on the magnetic
magnetic field. We plot only the componenta/hich have non field, In the present case, fdt, < 0.9 kG the dominant com-
negligible amplitudes. We see clearly that the energy of the m%‘Bnent isk = 1 and forB, > 1.1itis k = 5. The magnetic
component of the mode decreases whgrincreases, whereasgie|d totally changes the geometrlcal nature of the mode. One
the energy of new components increases. can note that for magnetic fields abavé kG the mode = 1,

Let us examine, for example, the caselof 1in Fig[S. ,,, — o orm = 1 becomes undetectable for observers because
We see that WheB |S rela“vely Sma”< O 6 kG abOUt 100% the Spat|a| averag”']g Of the Compon@n:t: 5 Van|shes
of the energy is contamed in the componént 1, m = 1.
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Fig. 10. The same ratigy, for ¢ = 3 m = 0 (left) and/ = 3 m = 1 (right) as function of magnetic field.
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Fig. 11.The same ratigy, for £ = 3 m = 2 (left) and? = 3 m = 3 (right) as function of magnetic field.
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Fig. 12. The same figure as the previous one but/fer 0 (left) and? = 2 m = 0 (right).

To the contrary, we can expect to see modes which are inWshen B,, increases, the base of the boundary layer has to be
ible without a magnetic field, say with> 4, but for which in deeper (say for greater densities) in the star in order to the ratio
the case of stron@, the dominant component is obtained fo (see EdL) remains small to insure the decoupling between
k < 3.Thisisthe case df= 5, m = 1 as we can see on Fig.J14.acoustic and Alfénic modes. We give in Table 1 in Appendix
However, we should note that one cannot arbitrarily increase theeveral positions atg; for different values of3,,.
magnetic field because of the main assumption we made for the We also assumed small horizontal wave numbersinthe mag-
magnetic layer, i.e. the plane parallel approximation. To be vahetic layer compared with the radial ones. This assumption still
the magnetic layer must be situated close to the top of the stamains valid if the degree of Legendre function is not too large.
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Fig. 13.The same figure as the previous one but/fer 2 m = 1 (left) and/ = 2 m = 2(right).

As the series E. 14 and Eq]15 require higher orders when the| -
magnetic field increases, we have a limitation on the valu,of -
Inour case, the plots af, show that even in the case of magnetic ~ :
fields abovel kG the maximal amplitude is for small degrees
of Legendre functions, i.e< 10, except forl = 2,m = 1and
¢ =3,m = 0andm = 1 for which some polynomials of large < & -
degrees have strong components in the expansioris Eql 14,15
For the cases of = 3 m = 0 and? = 2 m = 1 we stop the

calculations forB, = 1.0 kG andB,, = 0.83 kG, respectively,

because they involve degrees larger th@for higher magnetic

fields, and then are incompatible with the assumptions we made, |

/
“
=

P
~N oo =

3.5. Contribution to pulsational damping Bprer (KO

From the system of linearized equations EqJA.I}A.4 in a%jg' 14. Ratio of the mode’s energy; for £ = 5 m = 1 divided by

. ; ; the total energy ~, ex, as function of magnetic field. We see that for
pendix A, one can derive an equation forsnergy conservatl 'j > 1.7 kG this mode/ = 5 becomes detectable because its main

(by multiplying with the complex conjugate @fand integrating componentisk =1m =1
over a given volumé’)

atrg; we haves < 1. Then, we get
2

2 7 _ —
o Mfit
- —; —
7{5 {(6;0— §.Vpo+ p0@1> 13 } .dS Im (6p + po®1) £5dS
L . R Sfit . o
s Mfit Lipo " Or
lop|2 - = = . o . _
+ T + & .Vinpy & .V popdV Neglecting the effect of the gravitational potential which is small
v [11Po for high frequencies, one can write the imaginary part of the
opt 3 2
+/ {po‘h (Fp _ & Dinpy }dV frequency as
v 1Po
o B2 w :/Im Tg¢, cos 0) } d(cos 6 34
_/{2R6<5p g.%% i }dv_ - {g(rse. cos6)} d(cos 0) (34)
v Tipo 4m .
with,
This formula is useful for two reasons. First, it provides a wa o erit Poq Y~
to estimate the numerical precision of the frequencies (seeacqﬁ“COb o) = WR Lol Z Pdm. (35)
Mfit g

Appendix C). Second, it can be used to find the angular location
of the damping zone. To do this, we take the imaginary part ©hen, one sees that the imaginary part of frequency comes
Eq[33 and neglect the contribution of the magnetic field sindepm the imaginary part of the acoustic fldy¢* through the
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Fig. 15.Plots of the imaginary part of the functigrirs:, cos #) for different magnetic fields)(5 — 1.1 kG) for two moded = 1 m = 0 (left)
and/ = 1 m = 1 (right) corresponding to the modes in Hily. 6. The full curves correspond to an increasivith B, whereas the dot-dashed
curves correspond to a decaywf with B,,.

fitting surface.g(rgt, cos#) corresponds to this flux normal-greater than for the case = 0. The imaginary parts are greater
ized by the inertia of the mode. One can verify in Eig. 15 th#ban in the axisymmetric frequencies, except for sectoral modes
Im {g(ras, cos )}, first, depends od, but its contribution to which are less damped than in the axisymmetric case.

wy comes from aregion located essentially betwead ~ 0.4 We also showed that the magnetic field complicates the iden-
and the magnetic poles # = 1. The location of the maximum tification of modes, especially when the the valu®gbecomes

of this functionIm {g(rgs, cos #) } depends on the value &f,:  of the order 0f0.8 — 1.0 kG, because of the angular mixing of
one sees in Fif. 15 (a) that the maximum isdes 6 ~ 0.6 for ~solutions in the interior. This effect also depends on the value
B, < 0.8 kG, i.e. for cos 0y defined in Sect. 2.1, whereas forof m.

B, > 0.9 kG the maximum is foros § ~ 0.85 which corre- The aim of this work was to show the modifications of fre-
sponds to an extremum of the Legendre polynoialwe find quencies due to a strong magnetic field. That's why we used a
again that the presence of the mixing of spherical harmonics dery simple stellar model of oscillations, neglecting other im-
scribed in Sect. 3.4. One can check in Elg. 9 that the Legeng@tant processes in those stars such as non-adiabatic processes
polynomial of degreé starts to dominate the angular geometrgind the effect of chemical diffusion. The computation of more
of the mode/ = 1 m = 0 from B, ~ 1.1 kG. Note that even realistic frequencies needs to take into account these effects.

in the case ofB, = 0.8kG (full line) one sees the contribu-  In this paper we have considered the direct effect of the
tion of P? with the second extremum g, cos §) close to magnetic field on the oscillations. It cannot, however, explain
cos 6 = 0.85. the observed preference for dipole modés=(1, m = 0) in

One sees that the integral of the functipdecreases from roAp stars, since, in the case of our calculations and hypothe-
B, = 0.8 kG which leads to a decay af;, which corresponds sis, they do not minimize energy losses due to Aific waves.
to the Figl®. For the case of the non-axisymmetric moeel Thus, the explanation of mode selection remains a challenge to
m = 1, we find the same kind of results, except that&y > theory. Another piece of observational evidence is that chemical

0.9 kG the maximum of the functiop is for cos § =~ 0.75. diffusion occurs in Ap stars. The idea that chemical spots play
arole in the selection is not new (see Dolez et al. 1988). To this
4. Conclusion and discussion effect to work we postulate that there is hydrogen in excess in

the polar region. This is different from that in Dolez et al. (1988)
We have investigated the influence of a strong magnetic field §&cause they expected mostly Helium driving. However, it has
stellar oscillations in the case of Ap stars. With our model @een shown by Dziembowski & Goode (1996) and Gautschy
M =1.8Mgy, R =15Mg andX. = 0.7, we find that forB,, et al. (1998) that only the kappa-mechanism in the hydrogen
smaller than 0.8-0.9 kG the magnetic field has a damping @fnisation zone can explain high frequencies excitation in roAp
fect on p-modes oscillations which increases with whereas stars. Therefore, p-modes could be more excited at the pole than
above 0.9 kG this damping effect decreases \idth The real at the equator. This configuration could explain that modes are
part ofv is shifted up to 2Q.H = from its non-magnetic value. aligned with the magnetic axis.
The imaginary part which comes from ABwnic wave losses,
produced in the magnetic layer, has values up to Ai%. More-
over, these results depend on the geometry of the mode, parti&Hbendix A
larly on the azimuthal degree. The degeneracy of frequencies '
is, then, partially raised by the magnetic field. The real part, fdhe aim of this appendix is to explain in a detailed way how to
non-axisymmetric oscillations, increases withand is always obtain the boundary conditiafi(6, w, m).
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A.1. Set of equations [A7]is the equation of continuitf_Al.8 the equation of motion

— . . — .

The full set of linearized ideal MHD equations in the case &ner,[m_fhe equation of motion 0@9 [A.12 the equation of

adiabatic oscillations is motion one,. [A.9,[A.11 have been introduced to get a system
of differential equations of the first order.

— the equation of motion The following variables have been introduced
— —
— — Vv A B — 2
—pow® €= —V Pi+p1go + ir A By (A1) h:ysm 972(;05951119 (A.13)
— the conservation of mass W = imsin fw (A.14)
— —
p1=—V .(po &) (A2) and
— the adiabatic condition 127GM 3V
ép p o= BR Po = ﬂT (A.15)
— = Fl — (A3) p 1
Po Po

with 3 defined by Ed.]1.

— the equation of induction V ande; are defined by

Bi=V A(€ A By) (A.4)
1=V A(§ A Do . dl M
. _ _amnp _ pogor ¢ = 33— (A.16)
where the quantitie®;, p;, B; denote the Eulerian perturba- dinr bo M,
tions of the pressure, density and the magnetic field, &nd We also introduced the dimensionless frequenty
dp denote the Lagrangian perturbation of the pressure and the oM
density. The temporal dependence is assumed to &&*. The 2 — 3F02 (A.17)
—

displacement and the Lagrangian perturbation of pressure are ) ] ) )
given by ECB and El 4. As we consider high frequencies, Wéh the range of frequencies we consider in this paper

adopt the Cowling approximation, i.e. we neglected the pertlLiL-ZC\)/S-BOO]/;]HZh“ corresponds to a rigg_e of [10|,19] f@; |
—
bation of the gravitational potentiaf; =0 . e see that the system EQ. A=A 12 is singular at the pole

In order to simplify this system of equations, we have ma(zmd the equator. These two limit cases needs a special treatment

. . : See Appendix B)
several assumptions. First, we assumed large radial wave n . .
bers. therefore The upper and lower boundaries of the magnetic layer de-

5% pend, as expected, on the value of the photospheric magnetic
—

— > X (A.5) field B,. For the top of this layer, we required that tends to

O vacuum field & — 0) asp tends to zero. Therefore, we can put

whereX is any perturbed quantity. More, We suppose that hoﬂie right hand side of Ef. A0 and [Eq. Al12 equal to zero. This
zontal wave numbers are small compared with radial wave nurnéfquires us to extend the atmosphere sufficiently high to have

bers, ie low density and then verifiwo? < 1. At the base of the mag-
X 87X (A.6) neticlayerwe need two conditions. The first one corresponds to
oz — 00 a negligible magnetic pressure compared with the gas pressure;

We also assumed ~ 1. The result for the Lorentz force withfor this we requires; < 1. The second condition concerns
these approximations is given by Et.16-8. After simplificationsifv enic waves. We require that their wavelengths are much
thanks to the previous assumptions and a little algebra, we ggbrter than the pressure scale heightdc > V2. We give
the following system in Table 1 several values ef at the top and the base of the
dy q w magnetic layer. N

dr T, sin?e (A7) The general solution vectd# = (y,q, h, f,w,g) of this

dq @ ) tan2 6 h system can be written as a linear combination of six linearly
- = V{r 5- +q+co(y(l+ 1 ) — 5 o2 9)} independent solutions. However, we assume that the star is an

dx n-0 . . . . . .
(A.8) isolated system, i.e. we reject inward propagating waves which
o~ @ ' could come from infinity. Hence, this reduces our solutions to
o= f- 3 (A.9) three inside the magnetic layer
X
ﬁ crac? | sin?0 S = C151 + €282 + C353. (A.18)

dr _ 3cos?f (yT —h) (A.10) ; ol ; -
There are two steps in the numerical integration. The first one
divc m2h consists of finding the three peculiar solutigfigor each radial
I (A.11) positionz in the magnetic layer. To do this, we start from the top
of the layer with analytical peculiar solutions which are found
dg cpao? ~ m2 thanks to a local analysis. We then integrate them numerically,
Tz 3coszp’ YT W(q +yV)) (A-12)  with amethod of Runge-Kutta, through the magnetic layer to the
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Table A.1. Limits of the magnetic boundary layer for different values of the magnetic fields, and in each case, the value of the two parameters
«a andg describing the importance of the magnetic field.

Bp (kG) Tfit Ttop Qfit Utop ﬂﬁt ﬂtop

0.5 0.9867 1.00152 0.98®° 0.18310~% 0.4781072 0.10710°
1.0 0.9816 1.00123 0.616° 0.18610~% 0.58010"2 0.89110°
1.5 0.9773 1.00107 0.508° 0.18410~% 0.58810"2 0.90010%
2.0 0.9732 1.00094 0.454€° 0.18810~% 0.5571072 0.877108

base £ = xat). The next step of the numerical integration is t@ he corresponding vector solution can be written as followed
find the coefficients of the linear combinatiéh. This is done at

the base of the boundary layer adding another condition. Sirfedtop) = (1, —T'1%1,0,0,0,0) (A.24)
atxg, one has? <« 1, we assumed a full decoupling between

p-modes and Alfénic modes beneath the magnetic |ayer_ V\Yéhere we choose the normalization Conditmn: 1. The sec-
add also the condition that there are only inwards propagat®id type of solution obeys the condition

Alfv énic waves under the magnetic layer (see also Roberts &

Soward 1983). Then the solution at the base of the magné??c: 0. (A.25)
layer has the following form

S =C,S, +CySh + C353. (A.19)

The Alfvénic solutionss’;* are obtained with a WKBJ method.
The components of), at the fit only depend on the two vari-gq e |ast vector corresponding to the wave number
ablesy, andg,. (see below). Therefore, the unknown quantities

areCy, Cy, C3, CY, C% andC, which are found matching the —im

solutions EJ-ATB and EQ-AIL9. This leads to a linear hombs = 2 [cosO | (A.27)
geneous system of equations which has non trivial solutions if

the secular determinant is zero. This condition gives the retire can choose with = 0 (with w = 1)

tion betweery, andy, atx = x5, that is to say the boundary

This gives a second vector (with= 1)

So(top) = (2/(3cos? 0 +1),0,1,0,0, —m? /2 cos? 0). (A.26)

conditionF (0, w, m). S3(top) = (A.28)
—icos@ 2 I'; I't  —icos@
( 0,1,0)
A.2. External boundary conditions m  3cos?0+1"3cos?0+1  sin*6’ T

We adopted here a local analysis of the system assuming tNgkt, each component of the vectsis integrated by a method
the coefficients of the system EG. A 7-Al12 are constant (Wé&Runge-Kutta of the fourth order with adapted step size. The
assume to be in an isothermal atmosphere). The solutions hegallt is the values; (fit), Sa(fit) and Sz (fit).

the forme**. This gives a relation of dispersion

c102 tan2 0 m2 A.3. Inner boundary conditions

(1+ N (K> + ) =0.
Ty 4 4cos? 0 To obtain the expression for these coefficients, we require new

(A.20)  conditions at the base of the magnetic layer. In this part of the

One gets three groups of solutions. As said before, we keep offigh the ratigi is very small. This means that the Aéiwic speed
outward propagating or decreasing waves in the atmosphédsehegligible compared with the sound speed. Since the two

E*(k? — VE +

The solution may be written as perturbations o andp, say the Alf\enic waves and pressure
waves are propagating with very different speeds, it appears a

S(top) = C151(top) + C252(top) + C393(top). (A-21) " gecoupling between the two. Mathematically, this decoupling

The three remaining solutions correspond to three differedgpears in the system Eq. AL7- Al12 because of the small value

waves numbers of EQ._A.20. of n = 1/(ac?). Then, a solution of the system Eq. A.7-A.12

The first one is can be written as
ky = % (1 _ \/1 _ g"’ (1+ tarj 0)> (A22) S(fit) =CpS, + CLSY +CAsA. (A.29)
aac,O

“wn

. . . ) ) The subscript §” refers to the p-mode solution, whereas the
Tac,o DEING the dimensionless non-magnetic acoustic cut-Qfipseript 47 corresponds to the Alfenic solution. Since, the
frequency and is given by effect of the magnetic field is very small below the magnetic

LV layer, we can again use a perturbative approach to find the so-
Oac,0 = T (A-23)  |utions.



A.31. p-modes solution

This corresponds to the zeroth-order of perturbatipn; 0.
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with
ha =) 207 5 (A41)
A7V 3cos20 ' '

Then, EqLAY-Eq.ATR reduces to

sin® 0 . m?
=3 Yp Wy = —W(qp +y,V) (A.30)
dyp dp
29p _ _ 4P A.31
dzr Fl ( )
d
S _ i, + cr0%y,} (A.32)

dx

where we neglected the terms duewip since they are small
compared withy,, andg, as we can see on Hq. Al30. This sys-
tem corresponds to the system of equations in the case of
magnetic and adiabatic radial oscillations (in the Cowling ap-

proximation).

we obtain
~ sin? 0
fp = *ﬁ% (A.33)
1 1 tan? 6
g, = —m?> 11— — 1 . A.34
9p m (010_2( Fl )qp + ( + 4 )yp) ( 3 )

Then, we can write the vector solution for p-modes as functiop '~

of y, andg,.

Sp (yp;Qp;hp;fp§ﬁp;§p)

.2 2 2
sin® 6 —m tan“ 0
1,0,—,0, —, —m?(1
yp( a07 2 7Oa 010_27 m( + 4 ))

—sin?0 2 —m?

2T

—m

+ a4 (0, L0, (1- 1)) .(A.35)
Iy

"1 Vo2 cro?

A.32. Alfvénic modes

This corresponds to the first order of perturbations;.ite
suppose for Alfénic waves thag < h,w and alsal/dx > V.
The system governing the Aldnic waves is

d?>hy  ldwa crao?
dx? 2 dr  3cos?f ha (A.36)
d?wa m2  dha cac? [ mPqyu
_ S A.37
dx? 2cos? 6 dx 3cos? 6 (wA + 0102V> ( )

dga WA cr0?
— =V ——h A.38
dx (sin2 9 2cos2f ( )

We keep only solutions which propagate inwards. One has, then,
two kinds of solutions
— solution withk = k4

iVeio? 2

Sh= (0, 27 1,ika,0, — A.42
a=( "2k 4 cos2 6’ 154, ’200520) ( )
— solution withk = /k% +m?/(4 cos?0)
9 iVeio? Veyo? —2ikcos?0 2cos? 0k3
A:(Flkm27 m2 m2 s m2 a_170)~
(A.43)

Pnén, atthe base of the magnetic layer zg; the inner bound-

ry condition write as
CpSp + C4S4L + C38% = C1S1 + 0289 + C353 (A.44)

can be written as the following system of algebraic linear equa-
tions

iy Ys —Ya —Yi U Cy
oG B —qy —qh — Cy
ha hehs o —hi =G —hy Cf’ = 0.(A.45)
fi fo fs —fi —fA —fp Cy
T @y @ -y —ah | | C2
g G2 93 —gx —9i —0p Cp

The solutions with the subscripts 1, 2, 3 are the valugsateg;
after integration in the boundary layer, and the solutions with
the subscript “A” are given by Efl. A-#2 ahd Al43. Requiring that
the determinant of the matrix in Hg.Al45 is zero, one obtains
the functionF (6, w, m).

Appendix B:

The results presented in the previous section are not valid at the
pole @ = 0) and the equato(= 7 /2) because of the singular
behaviour of the equations. For these two points we need to find
two systems of equations.

B.1. The pole

At the pole the Lorentz force vanishes. Therefore, the system
of equations reduces to the second ordef Eq.]JA.30JA.32 (i.e. the
system for radial p-modes in the non-magnetic and adiabatic
case)

To solve this system we use a WKBJ approach with the form

ha,wa ~ exp {1/ kdm} (A.39)
k obeys the following relation of dispersion
2
2 12 2 g2, ™M\ _
(k5 — k?) (k:A k* + 4c0520> (A.40)

B.2. The equator

At the equator the Lorentz Eq[6-8 gets a simpler expression

VP (d%y . dw
= aw B.1
4aR <dac2 Ham dx B.1)
Ly=0 (B.2)
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Fig. C.1. Relative differences between the numerical solution for the real frequency (left) and the imaginary frequency (right) with the frequency
calculated with E4_C]1 and Eq. €.2; for the mdde 1, m = 0 (full) and£ = 1, m = 1 (dashed) in Fid.]6.

3VPy. dy

*~ 4ar dz

It can be shown that the system at the equator reduces to\m{?1
second order

.
(B.3) 8w2uRy1/ | &€ Pdm =Wy + Wy + Ws + W, (C.2)
M

_ 2 2 _ *
dy _ 4 (y_m I A " m° y (B.4) Wy =1Im . (0p) &rdS (C.3)
de T4 c10%2V B c102 B b
dg _Vgq( ~—m® A c10%Vy 1 m? (B5) Wa=1m Sfit (bo1)¢7d5 c4)
dr =~ A c102V B A 2oiB ' Sp*
with M I'ipo
Am14 Y ®6) Wi——Im [ & (&0 g4, (C.6)
40{F1 M dr
B—1 3m? (B.7) The relative differences between the numerical solutiong;of
N 4ci0?a’ ' andy; with the frequencies calculated with Eq.IC.1 andEql C.2
are given in Fid_Cl1. We see that the consistency of the calcu-
Appendix C: lation are better thah0—° for the real part and better tharo1

: : for the imaginary part, for the mode=1m = 0 andm = 1.
The formula Eq-3B provides a good test for numerical calcu- ginary p m m

lations. Once the numerical solution is found the eigen vectors

are injected in the following formulas Eg.@.1-C.2 which lead3eferences

to another evaluation of the frequencies. We neglect the tergig,cock H.w., 1947, ApJ 105, 105

corresponding td3 since the eigen frequencies corresponds fyra E.F., Landstreet J.D., Mestel L., 1982, ARA&A 20, 191

the oscillations below ¢, i.e. where the dynamical effect 8f Cunha M., 1998, Contribution of the Astronomical Observatory

is negligible compared with the effect of gas pressure. Skalnate Pleso Vol. 27, no. 3, p. 272
We give hereafter the formulas fo; andv; obtained by Cunha M., Gough D.O., 1998, In: Provost J., Schmider F.X. (eds.)
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