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Abstract.

We have been making sustained observations of the earthshine from Big Bear

Solar Observatory in California since late 1998. We also have intermittent observations
from 1994-5. We have re-invigorated and modernized a nearly forgotten way of measur-
ing the earth’s albedo, and hence its energy balance, previously studied by Danjon and
his followers for about twenty-five years early in the last century, using their observa-
tions of the earthshine from France. This is the first in a series of papers covering ob-
servations and simulations of the earth’s reflectance from photometric and spectral ob-
servations of the moon. Here, we develop a modern method of measuring, instantaneously,

the large scale reflectance of the earth.

From California we see the moon reflecting sunlight from the third of the earth to the
west of us in our evening — before midnight — which is during the moon’s rising phase,
and from the third of the earth to our east in our morning — after midnight — which is

during the moon’s declining phase.

We have precisely measured the scattering from the moon, as a function of lunar phase,
which enables us to measure, in a typical night’s observations, the earth’s reflectance to
an accuracy of 2.0% (equivalent to measuring the earth’s emission temperature to ~ 0.8
K). The albedo is due to the interplay of cloud cover and the different landscapes.

1. Introduction

It is important to know whether there is an on-going
global change in the earth’s climate. To answer this, one
needs precise, global/integrated measures of relevant quan-
tities. The earth’s climate is driven by the net sunlight de-
posited in the terrestrial atmosphere, and so, is critically
sensitive to the solar irradiance and the earth’s albedo. Pre-
cise measurements of the solar irradiance have been made
by various satellites and by using ground-based proxies (for
a review, see Frohlich, 2000, and references therein). The
spectrum of efforts to determine the earth’s global albedo is
not so rich. There have been efforts using systems of satel-
lites (Buratti et al., 1996, and references therein), but virtu-
ally no efforts from the ground. Nonetheless, the earth’s en-
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ergy balance is determined in large part by its global albedo
— the fraction of the incident sunlight that is directly re-
flected back into space without altering the internal energy
budget of the atmosphere. The earth’s surface, aerosols in
the atmosphere and clouds all reflect some of the incom-
ing solar short-wavelength radiation, preventing that energy
from warming the planet. Further, about 13% of the solar
radiation incident on the atmosphere is Rayleigh scattered,
half of this reaching the earth’s surface as diffuse radiation
and the other half being returned to space (Houghton, 2002).
Short-wavelength radiation, usually defined as having wave-
lengths between 0.15 and 4.0 pm, includes about 99% of the
sun’s radiation; of this energy, 46% is infrared (> 0.74 pm),
9% is ultraviolet (< 0.4 ym) and the remaining 45% is visi-
ble, with wavelengths between 0.4 and 0.74 pm (Liou, 2002).
A significant portion of the solar energy is absorbed by the
earth, where it drives terrestrial phenomena before being ra-
diated back into space through the atmospheric window as
infrared radiation peaking at about 10 pm.
The power going into the earth’s climate system is



Py, = CnR:(1 — A), (1)

where C' is the solar constant, R, is the earth’s radius and
A is the short-wavelength Bond albedo (reflectance). Subse-
quently, this incoming power is re-radiated back into space
at long-wavelengths, where

Pout = 47TR30-6T:7 (2)

where o is the Stefan-Boltzmann constant and € is the emis-
sivity of the atmosphere (about 5.5 km high, where the long-
wavelength radiation is emitted). 7. (~ 255K) is the effec-
tive temperature of the earth defined by this equation with
emissivity unit. One can relate that temperature to a more
global climate parameter like the globally averaged surface
temperature Ts. With this parameter, one must introduce
an atmosphere effective emissivity, ¢,. Some publications
refer to it as the normalized greenhouse effect g, following
Ramanathan et al. (1989), with g = 1 — ¢,. Then the out-
going power can be written as:

Pout = 47TR30-(1 - g)Ts47 (3)

If the planet is in radiative equilibrium, P;, = Poyt, then
we have

_c
40(1—g)

This means that the Bond albedo, together with solar
irradiance and the greenhouse effect, directly controls the
earth’s temperature. Global warming would result if ei-
ther A decreased or g increased. The possibility of increas-
ing greenhouse forcing due to an anthropogenic increase of
atmospheric CO; over the past century, has been treated
in detail in scientific literature over the past few decades
(IPCC,1995; Houghton, 2002 and references therein). The
scope of this paper, however, is the earth’s short-wavelength
albedo, which could also play a role. By measuring the
earth’s reflectance and the spectrum of the light reflected
by the earth, one can determine A and g, respectively.

It has been known for some time that the so-called solar
constant varies. In particular, data from the Active Cavity
Radiometer (ACRIM I) on board the Solar Maximum Mis-
sion have shown for one cycle (~ 11 years) that the solar
irradiance is about 0.1% greater at activity maximum than
at activity minimum (Willson and Hudson 1988, 1991), and
now this result from a series of satellites covers two solar
cycles (Frohlich, 2000). The precise origin of the changing
irradiance is generally attributed to a competition between
two components of the sun’s magnetic field — dark sunspots
and bright faculae, but an unambiguous description remains
elusive. Based on climatological models of heat storage and
thermal inertia of the oceans (Jayne and Marotzke,2001) it
is widely accepted in the climate community that a 0.1%
(0.3 Wm™?) change is several times too small to be cli-
matologically significant over the 11-year solar cycle (Lean,
1997), particularly if it is to be further obscured by a steady
increase in greenhouse forcing. It has been suggested that
there may have been two to three times larger, sustained
excursions in the recent past (Lean, 1997), like during the

T, = (1-A). (4)

“Maunder Minimum” (1650-1710) when a sunspot was rare
(Eddy, 1976). Still, there is strong evidence of a solar cy-
cle influence on climate going back more than 100,000 years
(Ram and Stoltz, 1999). If the 0.1% increase in the mean
solar irradiance between the mid-1980s and 1990 were typi-
cal, then one is led to consider more carefully the possibility
of a variation in the earth’s albedo. After all, the earth’s
reflectance seems to show considerable variation (Goode et
al, 2001).

It is not unreasonable to expect that global changes in
the earth’s climate would be manifest in changes in the
earth’s albedo. Potential parameters affecting the albedo
are volcanic eruptions, surface vegetation and/or desertifi-
cation (Betts, 2000), snow and ice area coverage (Randall
et al, 1994), and atmospheric constituents such as water va-
por and clouds, greenhouse gases and aerosols (Cess et al,
1996; Ramanathan et al, 1989; Charlson et al, 1992). Albedo
changes will be determined by the total effect of the changes
in all these parameters. However, these changing parame-
ters will bring along multiple climate feedbacks, which make
assessing the exact change in albedo a hard task (Cess et al,
1996). During the past decades there have been some efforts
to measure the earth’s albedo from space. The Earth Radi-
ation Budget Experiment (ERBE) instruments were flown
on the ERBS, NOAA-9 and NOAA-10 satellites from 1985
to 1990. More recently, in 2000, the Clouds and the Earth’s
Radiant Energy System (CERES) instruments have begun
taking measurements. In the near future the TRIANA mis-
sion wil also contribute by observing the earth’s reflectance
from deep-space. However, a long-term data series of the
earth’s albedo is difficult to obtain due to the complicated
inter-calibration of the different satellite data and the long
gaps in the series.

To derive ideally perfect measurements of the earth’s re-
flectance it would be necessary to observe reflected radiances
from the earth, from all points on the earth and at all an-
gles. Therefore, all measurements from which albedo can
be inferred require assumptions and/or modelling to derive
a good measurement. The availability of different albedo
databases and their inter-comparisons can help to constrain
the assumptions necesary to derive estimates. In this sense,
long-term ground measurements of the earth’s albedo com-
plementary to those from satellites, would be an advantage.

Here, we focus on a terrestrial determination of the
earth’s global albedo from an old, and largely forgotten
method. That is, global albedo can be determined by mea-
suring the amount of sunlight reflected from the earth and in
turn, back to the earth from the dark portion of the face of
the moon (the “earthshine” or “ashen light”). The most im-
portant historical program of earthshine measurements was
carried out by Danjon (1928, 1954) from a number of sites in
France. He used a “cat’s-eye” photometer to produce a dou-
ble image of the moon, allowing the visual comparison of the
intensities of two well-defined patches of the lunar surface
— one in sunlight and the other in earthshine — at various
lunar phases. Using the “cat’s-eye” mechanism, he stopped-
down the light from the sunlit portion to match the bright-
ness of the ashen portion. This differential measurement
removed many of the uncertainties associated with vary-
ing atmospheric absorption and the solar constant, allowing
Danjon to achieve his estimated uncertainty of roughly 5%,
ignoring his appreciable systematic error from an incorrect
determination of the moon’s reflectivity. Our measurements



are about an order of magnitude more precise than his es-
timates, in large part because we have better measurement
technologies. We have also solved the problem of the uncer-
tainty in the scattering from the moon as a function of the
phase of the moon (see section 4). At about 1% precision on
individual nights, our terrestrial measurements of the earth’s
albedo have a precision comparable to that from satellites
like the ones derived from ERBE datasets, of around the
same value (ERBE Data Management Team, 1985) and to
those of the CERES instrumentation, of around 1% (Seiji et
al, 2002).

From 1926 to 1930, Danjon made 207 measurements of
earthshine. Dubois (1947) continued the program through
1960 from the observatory at Bordeaux using a Danjon-type
photometer.

Danjon’s and Dubois’ results show a number of interest-
ing features. The daily mean values of the observations vary
more widely than would be expected on the basis of the vari-
ation of measurements on a single night. This can plausibly
be attributed to daily changes in cloud cover. The typical
lifetime of large scale cloud systems (1000’s of km) is 3 days
(Ridley, 2001), but from one night to the next the earth’s
area contributing to the earthshine changes (see Figure 1).
Unfortunately, extensive cloud-cover data were not available
at the time of Danjon’s and Dubois’ observations.

Danjon (1928) also examined his observations to deter-
mine whether there was a long-term trend in albedo, but
found none. Dubois’ observations for some 20 years ending
in 1960, showed considerable annual variability, which he
speculated was due to solar activity. His published monthly
variations from 1940-1944 also show a strong correlation
with the 1941-42 El Nifo. In the past forty years, there have
been observations of earthshine by Huffman et al. (1989)
and one-time observations by Franklin (1967) and Kennedy
(1969).

Danjon used his observations to estimate the mean global
albedo. Since the observations are only at visible wave-
lengths, they must be corrected for the balance of the short-
wavelength radiation, most of which is in the near IR. Es-
timates of this correction were made by Fritz (1949), af-
ter taking into account the decrease of the earth’s albedo
with increasing wavelength (our “blue planet”). Fritz also
attempted to correct for the geographical bias in Danjon’s
observations. The earth western hemisphere (Asia, Rus-
sia), which was most frequently observed by Danjon, has a
greater fraction of land than does the globe as a whole, im-
plying that Danjon’s value would be high because the sea
is dark compared to land. Combining the decreases from
the absence of the IR and geographical bias, Fritz found
that Danjon’s visual albedo of 0.40 corresponds to a Bond
albedo (considering all the wavelengths and directions) of
0.36.

Flatte et al. (1991) noted that a correction must be made
for the “opposition effect” present in lunar reflectance prop-
erties. Observations of the moon show that the moon’s re-
flectivity has a strong angular dependence, which was un-
known in Danjon’s time. Hapke (1971) mentions in his re-
view that the increase in brightness may be as much as 50
to 100 % for lunar phases angles from 5° to 0° (exact
backscattering). This enhancement was once thought to be
due to the porous nature of the lunar surface (Hapke, 1971),
and was unknown in Danjon’s time. More modern work has
shown it to be caused by both coherent backscatter of the lu-
nar soil and shadow hiding in roughly equal amounts (Hapke
et al, 1998; Hapke et al, 1993; Helfenstein et al, 1997). The

smallest lunar phase angle measured by Danjon was only
11°. The extent of the small-angle rise varies over differ-
ent regions of the lunar surface, but can easily be the 20%
required to reduce Fritz’s value of 0.36 to the generally rec-
ognized standard of about 0.30 (Buratti et al., 1996). In
fact, we shall see in section 4 that an incorrect lunar phase
function is the primary source of Danjon’s overly large visual
albedo.

We have been steadily observing the earthshine from
Big Bear since 1998 to determine the earth’s reflectance
and its variations. In this paper, we discuss in detail the
method we used to determine reflectance from earthshine.
As mentioned, the first such observations were made by Dan-
jon (1928), and considerable modernization was required to
make this method sufficiently precise to usefully complement
satellite measurements. Beyond developing the methodol-
ogy, our purpose here is to demonstrate the reliability of the
technique. This is the first of a series of papers deriving
from our earthshine project. The next two papers (Goode
et al, 2003; Pallé et al, 2003) will present and interpret the
results of our observational work and simulations of the ob-
servations. A fourth paper in preparation concerns our ob-
servations of the spectrum of the earthshine in the visible
range (500-800 nm) from the 60" (1.5 m) telescope on Mt.
Palomar, with a resolving power of R = 19, 000.

In the following section we will discuss the theoretical ap-
proach to the earthshine Bond albedo determination. Sec-
tion 3 describes in detail the data reduction techniques fol-
lowed to analyze the earthine data. In section 4 our method
for lunar phase function determination and the corrections
applied to its calculation are also detailed. Finally, section 5
discusses the precision archieved in our nightly albedo deter-
mination. Two appendices have been included in the paper,
the first deals with the optical setup of our telescope, and
the observational technique followed during observations.
The second contains the description of the two methods em-
ployed to determine the exact transmission of the filter used
for our lunar bright side observations.

2. Determining the Earth’s Reflectivity

from Earthshine

Ground-based measurements of the short-wavelength
(visible light and near infrared) albedo of a planet in our
solar system are relatively straightforward — except for the
earth. However, we can determine the albedo from the
ground by measuring the earthshine. From a terrestrial per-
spective, the earthshine is the sunlight reflected from the day
side of the earth to the moon, and finally back to an observer
on the night side of the earth. At any moment, the earth-
shine can provide an instantaneous, differential cross-section
of the sunlight reflected from the earth, see Figure 1.

The earth’s differential cross-section depends on its ge-
ometrical albedo and its phase function. The geometrical
albedo is independent of 3, the earth’s phase angle; rather,
it is proportional to the backscattered cross-section. At the
top of the atmosphere (taken by convention as being 30 km
high by the ERBE data processing), the differential cross-
section of the reflected sunlight for scattering by an angle 3
(note that 8 is the supplement of the usual scattering angle)
is given by

o = (DR, 5)



where R, is the radius of the earth, p. is the geometrical
albedo of the earth and f.(3) is the earth’s phase function,
defined such that f.(0) = 1, as can be seen in the Lamber-
tian limit from Equation (8).

Using Equation (5), we can write the total scattering cross
section as

- / 99 10 = R2p, / " L8 sin@) 148, (6)

where p. and f. depend on the earth’s weather, season and
climate. Additionally, fo depends on the earth’s phase as
seen from the moon. From the total cross-section, we can
define the Bond albedo — the fraction of solar energy incident
on the planet that is reflected as
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Figure 1. A not-to-scale cartoon of the sun-earth-moon

system viewed from the pole of earth’s orbit. In the top
panel, the earth’s topocentric phase angle, o, with respect
to BBSO is defined. The plot also shows the moon’s se-
lenographic phase angle, 8, with respect to one of the fidu-
cial points (Grimaldi) used in the observations made from
BBSO (also indicated). 8 is the angle between the sunlight
that is incident somewhere on the earth and reflected, as
earthshine, to Grimaldi. 6o(= 8 — ) is the angle between
the earthshine that is incident, and reflected from the moon.
The path of the earthshine is indicated by the arrows. 6o
is of order 1°, or less. In the lower panel the same diagram
is drawn for a negative lunar phase angle, and extra fea-
tures like the moon’s orbit around the earth are indicated.
On both panels the aspect of the moon as would be seen
from BBSO is also indicated in a box. The light-shaded
areas of the earth indicate the aproximate latitude range
that contributes to the earthshine. Note how for positive
lunar phases (top panel) the earthshine contribution comes
from latitudes west of BBSO while for negative phase (lower
panel) angles it comes from latitudes east of BBSO.

A=-2 =p / £.(8) | sin(B) | dB. )

Using earthshine data, we integrate over the phases of
the moon to determine, say, a seasonally or yearly averaged
Bond albedo. 8 varies between 0 and +7, with 0 to m be-
ing the waning moon and -7 to 0 being the waxing moon.
This integration is done over a series of measurements, which
comprise a wide range of geographical and temporal cover-
age. For example, for a few consecutive days of observation
the coast of China may be present in all measurements, but
its maximum contribution to the earthshine may come be-
fore, during, or after the time of our measurements. On the
other hand, for a different night China may not be visible at
all while Europe is. However, since we are averaging over a
wide range of mixed surface types, the anisotropic reflective
properties of individual elements may be masked, and the
assumption of isotropy reasonable (Ueno, 1981). Thus, we
can average our observations to derive reliable Bond albedo
estimates on seasonal or yearly time scales.

If we assume that the earth is a Lambert sphere, we can
do the integrals in Equations (6) and (7) exactly. A Lam-
bert sphere isotropically reflects from its surface, which is
assumed to be fully diffusive. Then, fr, the earth’s Lam-
bert phase function, is determined by

(= | B 1) cosB+sin | 8]

™

fu(B) = (8)

The earth’s phase function is observed to be very roughly
Lambertian for | 8 |< 2F, Goode et al. (2001). Under this
assumption, we determme a simple proportionality between
the geometric albedo and the global or Bond albedo, namely,

2
Pe,L = EAB,L- 9)

Modelling confirms that the earth’s phase function is ap-
proximately Lambertian for | 8 |< 2& (Flatte et al, 1991).
Thus, a conveniently normalized, differential measure of the
earth’s reflectivity is the effective albedo, A*, where

— §pefe
2 fe,L7

which is the albedo of a Lambert sphere that would give the
same instantaneous reflectivity as the true earth at the same
phase angle, and where an unchanged A* as a function of
phase angle would imply a Lambertian earth.

An observer on the moon in the region illuminated by
the sun and visible from the earth would see both the direct
sunlight and some part of the sunlit earth. The solar flux
(or irradiance) seen by that observer would be

pefe A

A' =
pe,Lfe,L

(10)

C

L= g

(11)

where C is the solar constant and R,,s is the moon-sun
distance measured in astronomical units. Similarly, the ir-
radiance of the earthlight would be

R2

I. = RZ, pefe(ﬂ) (12)



where Rem and Res are the earth-moon and earth-sun dis-
tances, respectively. Thus, the earth’s reflectivity can be
expressed as

_ L
-7

Rem
Re

Res
Rms

pefe(B) = TP I=T (13)

In the observations, we study pairs of diametrically op-
posite fiducial patches, five in the earthshine and the other
five in the sunlit part of the moon, both near the night-
time lunar limb. Hereafter when referring to radiances, we
will use the term ‘earthshine’ to refer to the radiances mea-
sured for the five fiducial patches on the earthshine side of
the moon, and we will use the term ‘moonshine’ to refer to
the radiances measured for the fiducial patches located on
the bright side of the moon bathed in sunlight. The term
‘crescent’ radiance will also be used in following sections,
indicating the measured radiance averaged over the whole
sunlit area of the moon.

For our purposes here, we call a representative pair of
those opposing fiducial patches “a” and “b” and treat them
as unit projected areas. If a is illuminated only by the earth-
shine, the radiance observed by an observer on the earth at
a distance R,, would be

I, = 1,Pefe8) (14)

ROG
where Tg is the transmission of the earthshine through the
atmosphere, and f,(6o) is the lunar phase function for the
near retroflection from patch a, see Figure 1. Thus, I,/T,
is the observed radiance corrected for airmass. Similar to
Equation (14), the radiance of the sunlit portion, b, would
be

(15)

where 6 is the lunar phase angle and 0, like a and S, varies
between 0 and +m, and where the lunar phase function,
fv(0) embodies the dependence of the fiducial patch on the
angle between the sunshine and the moonshine, see Figure
(1). Thus,

L/Te _ I pufa(fo) B2

= , 16
/Ty  Is pofs(0) R2. (16)
and so
Ia/Ta pbfb(e) Res 2 Roa 2 Rem 2
eJe = T RN . 17
e fe(B) Ib/prafa(eo)[Re] [Rob] [Rms] (17)
Since £= is independent of lunar phase, Equation (17) is

also indepsendent of lunar reflectance provided all quantities
labelled by “a” are derived from the earthshine, and all la-
belled “b” come from moonshine. However, we ultimately
take p, and f,(fo) from moonshine data, which introduces a
dependence on the lunar reflectance. This small effect (the
effect of 50 A shift in the spectrum is small compared to the
spread among the ;;—Z), and we treat it as being subsumed

into that ratio, see section 4.4. Also, [%’i]z is so close to

unity that we can safely set that factor in Equation (17) to
unity. Thus, we determine that

_ L/Ta pvfe(8)
Ib/Tb pafa.(eo)

We measure I, and I in our nightly observations, and
correct for airmass (e.g., I,/T,). We have measured the lu-
nar phase function quite accurately over the last three years.
We use total eclipse data from 93November 29 to measure
the ratio of the geometrical cross-sections of the two fiducial
patches, I’:—Z. For our fiducial regions, this ratio ranges be-
tween 0.9 and 1.1. In section 5, we combine Equations (10)
and (18) to define our measure of the earth’s reflectivity,
A*, in terms of measured quantities, including the varying
earth-moon distance.

Re m
R,

RES

Pefe(B) Rons

[Pl (18)

3. Data Reduction

3.1. Image Analysis

The earthshine and moonshine (sunlit part of the moon)
intensities are measured by integrating the brightness of a
pair of fiducial patches — one from the bright side and the
other from the dark side of the lunar disk. In our study,
ten physically fixed fiducial patches have been used with

2000 February 29 — Phase 116

Grimaldi

Figure 2. The moon showing the bright side and the earth-
shine. The Grimaldi side is in the moonshine and the Cri-
sium side is in the earthshine. Our ten fiducial patches used
in the observations made from BBSO are indicated. The
crosses give the approximate positions of Danjon’s fiducial
patches. Goode et al. (2001) used one fiducial patch on
each side, and on the Crisium side it is the one closest to
the white cross, while on the Grimaldi side, it is the one
immediately above the black cross. In the image, the lu-
nar phase is 115°.9, near a declining quarter moon. Unlike
the moonshine, the earthshine is flat across the disk. The
flatness is due to the uniform, incoherent back-scattering
(non-Lambertian) in contrast to the forward scattering of
sunlight occuring in the sunlit lunar crescent surface.



five in the earthshine and five in the moonshine, see Figure
2. In selenographic (lunar) coordinates, the center latitudes
and longitudes of the five patches on the Crisium side are
(-17.5, -70.), (-11.2, -71.5), (-5., -76.), (0., -75.), and (7.5, -
76.5), and those of the five patches on the Grimaldi side are
(28.5, 72.5), (12.5, 75), (0., 77.), (-7.5, 75.), and (-13., 75.).
Each patch covers a longitudinal range of about 10 degrees
and latitudinal range of 3 to 5 degrees, the surface area be-
ing about 0.1% of the lunar surface, which corresponds to
about 100 camera pixels. These patches are located in the
“highlands” of the lunar surface, and the physical reflectiv-
ity of each is roughly comparable. One of the patches on
the Grimaldi side is very close to Danjon’s choice, while the
patches on the Crisium side are all closer to the limb than
Danjon’s patch (Figure 2).

To locate these patches in each lunar disk image taken
every night, it is essential to establish the transformation
between the CCD image coordinate system and the seleno-
graphic coordinate system. For this purpose, we first define
the limb and center of the lunar disk for each image. Each
of the raw lunar images is contrast-enhanced, and the limb
points are defined by looking for suitable positions of large
intensity gradient. Empirically, a minimum of 40 rim points
need to be obtained, and are then used to make a fitting to
decide the lunar center in the image plane. Once the lunar
center and limb are determined, the radius of the lunar disk
is calculated in the CCD’s coordinate frame. The next step
is to define the position of the lunar pole in the image plane.
To this end, some outstanding lunar features, whose precise
selenographic coordinates are known, are used to co-register
the two coordinate systems. The topocentric location of the
lunar pole at any given moment can be precisely calculated
using parameters from an astronomical almanac, from which
one can determine the projected positions of these lunar fea-
tures in the image plane, which is perpendicular to the vec-
tor pointing from the local observer to the lunar center. By
comparing these projected positions with the positions of
these features in CCD coordinates, the angle between the
projected N-S axis of the moon and the Y-axis of the CCD
coordinate system is derived. All our data reduction is done
automatically by a software package specially developed for
this purpose.

Once the transformation between the image plane and the
selenographic system is established, the five pairs of fiducial
patches can be precisely located on the lunar disk image.
The apparent areas of these patches change from night to
night because of lunar libration. The intensity is read out
as an average of the whole area, and the difference due to
the geometric effect of the reflectivity arising from libration
is accounted for in our next step of data reduction (section
3.2).

To ensure accurate photometry, flatfielding and dark cur-
rent subtraction are performed on each image. For earth-
shine images, we also need to subtract the background scat-
tering from the bright side of the moon. The background
scattering should be a function of both the inclination of
the vector connecting the lunar center and the background
point with respect to the lunar equator, and the distance
from the background point to the crescent. After exper-
imentation, we found that we could safely assume that on
the earthshine side, where the background points are not too
close to the crescent, at a fixed inclination with respect to
the lunar equator, the background intensity falls off linearly
with the distance of the background point to the lunar cen-
ter. Such a linear relation holds for the points that are not
too far from the lunar equator. So, for each fiducial patch

centered on the vector connecting the lunar center and the
patch, we open a small cone with an angular size 5°, and fit
the intensities of the background points, which are beyond
the lunar limb and inside the cone, as a function of their dis-
tance to the lunar center. In this way, we can extrapolate
the scattering intensity to the position of the fiducial patch
using the parameters obtained from the least-square fit, and
then subtracting the linearly extrapolated value from the
intensity of the fiducial patch. This procedure is illustrated
in Figure 3.

In accordance with Equation (18), the intensity obtained
from above is also corrected by scaling to a set of stan-
dard distances between the sun, moon and earth, before the
successive steps of calibration described in subsequent sub-
sections. Precise distance parameters are obtained from an
ephemeris.

3.2. Atmospheric Extinction

To eliminate the effect of the atmospheric extinction, ob-
servations are carried out for as long as possible during the
night, so that a measurement of the intensity at varying air-
mass can be obtained. For the bright side of the moon, we
expect the variation of the intensity to follow Beer’s law:

I=1Tpe "2, (19)
where I is the observed intensity, « is the atmospheric ex-
tinction coefficient, 7 is the local airmass and I is the in-
tensity at zero airmass — the intensity if the earth had no
atmosphere.

The airmass, 7, is determined from the angular altitude
of the moon in the sky at different times in such a way that
when 6. - the zenith angle of the ground observer’s view of
the moon, which is the complement of the moon’s angular
altitude - is smaller than 60°, = 1./ cos(6.); otherwise 7 is
interpolated from a standard airmass table (Table 1).

The above calculation refers to the airmass at sea level
with the pressure po = 760 mmHg and temperature to =
10°C, and the real airmass at the observer’s location must be
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Background Intensity (in arbitrary unit)
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g

220 240
Distancefrom Lunar Center (in pixels)

Figure 3. Illustration of the background subtraction for
earthshine images. The image on the left shows a back-
ground cone around a fiducial patch, within which the in-
tensity of the background points are read out to make a fit
as a linear function of the distance from the lunar center.
For the image shown, the intensity inside the cone has the
background subtracted already. The plot on the right shows
the decline of the off-limb intensity as the background point
gets further from the lunar center, and the overplotted thick
grey line indicates the least-square linear fit.



Table 1. Standard Airmass Table (8. in degrees)

0. |60. [62. |[64. |66. |68. . 72. 74. 76. 78. 80.

n [2.00]212]227[2.45]2.65 [2.90 [3.21 [359 [4.07 [4.72 [5.60 |
0. |81. [82. [83. |84. |85. 86. 87. 88. 89. 90. - |
n |6.18]6.88|7.77 | 8.90 | 10.39 | 12.44 | 15.36 | 19.79 | 26.96 | 40.00 | - |

corrected by a multiplicative factor of p/po/(0.96240.0038t)
(Allen, 1973). BBSO is 2067m above sea level, and the
pressure scale height at this altitude is 8200m, which yields
p = poexp(—2067./8200.). We then incorporate the cal-
culated 7 into the Beer’s law fitting to determine a and
Ip. We reckon that throughout a night, the evolving lunar
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Figure 4. In each of the four tryptics of the figure the inten-
sity per unit (lunar) area of the moonshine (top panel), the
crescent (middle panel), or the earthshine (bottom panel), is
plotted against time (on the left) and airmass (on the right).
These intensities are data count values read from the CCD,
corrected for all the steps indicated in section 3.1, and di-
vided by the lunar phase function. In the case of moonshine
and crescent intensities, the value has been also divided by
the transmission of the bright side filter. The “+”’s indicate
observed data points, and the solid lines are the fits to Beer’s
law. Upper siz panels: data from the night of September 5,
1999, demonstrating a typical good night, and the standard
deviation of the fitting is 0.007, 0.005, 0.007 (from top to
bottom). Lower siz panels: data from the night of Septem-
ber 17, 1999, demonstrating a typical, partly cloudy night,
and the standard deviation of the fitting is 0.219, 0.183,
0.077 (from top to bottom).

phase function can also contribute to the changing intensity.
The maximum phase change in a long night is less than two
degrees, within which the intensity change is negligible com-
pared to the change due to the airmass. Nevertheless, we
employ a quasi-iterative way to correct this minor effect, in
that we use an initial fit of the phase function to correct the
data, and after the airmass correction, we make the phase
function fit again. See the following section on how to obtain
the phase function. After a few iterations, the data converge
to a stable result. The observed intensity at each moment,
I;, is corrected, using the airmass, to the intensity at zero
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Figure 5. The moonshine, crescent and earthshine intensi-
ties and their Beer’s law fit for the night of 2000 January 28,
showing that while the moonshine and crescent intensities
follow Beer’s law very well, the earthshine intensity evolu-
tion deviates from Beer’s law. The standard deviations of
the fits are 0.004, 0.005, 0.014, respectively. The fact that
the fit is poor only for the earthshine implies sizeable short-
term variations in the earth’s effective albedo as seen from
BBSO due to a combination of factors including, among oth-
ers, the earth’s rotation, anisotropic reflectance and weather
changes.



airmass, I? = I; exp(an). Ip from the fitting is further used
as the intensity for that night’s lunar phase function.

The goodness of the fit to Beer’s law offers a ready cri-
terion by which each night’s local sky can be judged — the
“good” night’s data can be separated from that of the “bad”
(noisy) night’s (Figure 4). In practice, unless it is cloudy,
the data from almost all observable nights are preserved,
and the standard error in the fitting for each night is fur-
ther used as the input error for the lunar phase function fit.
Figure 4 shows an example of a typical good night and bad
night, as judged by fitting to Beer’s law. Experience from
the observations shows that the data usually follow Beer’s
law quite well, and the accuracy of the moonshine fitting
is often better than 1%. Among all the datasets collected
for 340 nights from November 28, 1998 to March 31, 2002,
the accuracy of the fitting is better than 1% for 110 nights,
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Figure 6. The variation of the atmospheric extinction co-
efficients for the crescent, (a.), moonshine (a.,) and earth-
shine (a.). Panel (a) illustrates a., (for five fiducial patches
as indicated by different symbols) against o, from which it is
clear that the crescent and moonshine patches are very much
alike; (b) shows a., of four out of five fiducial patches (as
indicated by different symbols) vs. the fifth fiducial patch, il-
lustrating that au, is virtually the same for different patches
(note the equivalence of each linear, least squares fits to the
data for each patch); (c) shows ae for four out of five fidu-
cial patches (as indicated by different symbols) vs. the other
fiducial patch, showing that a. is also the same for different
fiducial patches in the earthshine; and (d) shows a. (of all
fiducial patches in earthshine) against a, which is consistent
with the earthshine being bluer than the moonshine. The
various straight lines in each panel indicate a least squares
fit to the appropriate data.

and the accuracy is between 1% and 2% for 139 nights, and
between 2% and 3% for 52 nights.

In the case of earthshine intensity, apart from the atmo-
spheric transmission, the evolution of the earthshine is also
influenced by changing of the earth during a given night;
e.g., the sun rising over a cloudy China. In addition, almost
every month, on a few nights, we observe that the evolution
pattern of the earthshine intensity does not track Beer’s law
in an unambiguous way, even though the moonshine inten-
sity closely follows Beer’s law. An example of such a case
is shown in Figure 5. In general, the fit to the earthshine
yields a standard deviation that is larger than that for the
moonshine fitting by one-half to one percent. This latter dif-
ference contains the signal of the earth’s albedo variations.
On such nights when the evolution of the earthshine is signif-
icantly controlled by real changes in the earth’s reflectance,
apart from the atmospheric extinction, as illustrated in Fig-
ure 5c, the atmospheric absorption coefficient o obtained
from the Beer’s law fitting of the earthshine observations
may deviate from the true value. That is, some part of the
earthshine signal may be subsumed into the atmospheric
extinction, and vice versa, so that the correct atmospheric
attenuation cannot be properly determined from the stan-
dard Beer’s law fitting.

To deal with this problem, we investigated the relation-
ship between the atmospheric absorption coefficients for ra-
diances measured at the five patches on the earthshine side
of the moon (al;i = 1,2,3,4,5), the radiance of the five
patches on the bright side or moonshine (af,) and the ra-
diance of the total area of the crescent (a.). Figure 6 (a)
and (b) show the relationship between o, and the af, for
all five fiducial patches. Least-square fits reveal that the
af, (i = 1,2,3,4,5) can be regarded as being identical to
one another, and to a.. This is not a surprise, even though
the atmospheric attenuation is also a function of the wave-
length, as the light from a moonshine fiducial patch should
have the same spectrum as the light from the whole bright
side. Similarly, the earthshine absorption coefficient, c., is
linearly correlated with a. (Figure 6 (d)), but the absolute
value of . is systematically larger than that of a., indicat-
ing a stronger atmospheric attenuation in earthshine than in
moonshine. This is because the earthshine and the moon-
shine have different spectra, specifically, the earthshine is
bluer than the moonshine (Tikhoff, 1971; Arnold et al, 2002;
Woolf et al, 2002), because the bluer the light the more ef-
fectively the earth’s atmosphere scatters it away by Rayleigh
scattering.

The solution to fitting nights like those shown in Figure
5 lies in exploiting the linear scaling law that we find be-
tween a. and a.. This scaling enables us to make a better
determination of ae from a. for the nights when the usual,
local airmass changes leading to a good Beer’s law fit for the
moonshine, are compounded by sharp earthshine variations.
In those cases, the mixture yields observational earthshine

Table 2. The coefficients ae against a.

q a b o Oa op

1.0 1.1886 -0.0073 0.0099 0.0183 0.0023
1.2 1.1830 -0.0061 0.0128 0.0170 0.0023
1.5 1.1813 -0.0051 0.0132 0.0172 0.0023
1.8 1.1881 -0.0050 0.0140 0.0171 0.0023
2.0 1.2281 -0.0095 0.0167 0.0169 0.0023
2.5 1.2222 -0.0124 0.0164 0.0161 0.0022




data that deviate sufficiently from Beer’s law, so that one
cannot be confident of the fit obtained in the usual way. Our
solution lies in using a. to fix ae for the problematic nights,
beginning with

Qe =a X ¢+ b, (20)
where the scaling parameters a and b are obtained by a lin-
ear least-square fit of the above relation using a. and ac
from the nights that do not show apparent global evolution
that strays strongly from the Beer’s law fit. We reckon that
for the nights of significant global change, the standard de-
viation of the Beer’s law fitting of the earthshine (o.) must
be a lot larger than that of the crescent (o.), given that the
local atmosphere is reasonably stable throughout a single
night. For this reason, we make a further assumption that
when o is less than a cutoff value q times o, i.e., 0 < qoc,
we regard the global change as not being significant during
this night, and a. from the Beer’s fitting for this night is
reliable. Only then do we use these nights to make the fit
in order to determine a and b.

In Table 2, we list the fitting results, a, b, o (the stan-
dard deviation of the fit), o, and o, (the fitting errors
of a and b respectively) for various cutoff values, ¢ =
1.0,1.2,1.5,2.0, 2.5.

We can see from Table 2 that for ¢ < 2.0, the fitting
results are consistent with each other. In general, the ab-
solute value of a. is larger than that of a. by more than
0.01, or about 10%. That is, using a. ~ 0.1 and Table 2,
we have ae ~ 1.2 x a. — 0.01 ~ 0.11. We first tried to scale
ot to a. separately, and the resulting fitting parameters a
and b did not differ for different patches. Thus, we do not
distinguish among the a, from different fiducial patches, be-
cause there is no reason for us to believe that the o should
be different from one another (also see Figure 6¢). In the
subsequent analysis, we employ the scaling parameters at
g = 1.2 in Equation (20) to obtain a. from «. for nights
when o > 1.20.. Then, we use ae to fit out the atmospheric
attenuation, so that we can determine the true earthshine
signal. After applying this correction, a direct result is that
while the average of the A* is not altered, for some nights
their appreciable, original deviations from the average, at
comparable lunar phase, is greatly reduced. For those same
nights the calculated ae yields a slightly poorer fit to the
data than would a direct fitting to Beer’s law. The price
of this latter fitting was to force some of the earthshine sig-
nal into the atmospheric extinction coefficient, yielding an
erroneous extrapolation to zero airmass.

4. The Lunar Phase Function

The lunar phase function is defined as the normalized
change in the moonshine intensity as a function of lunar
phase, which represents the geometric reflectance of the
moon. It is measured from the readout intensity of each of
the fixed fiducial patches (five on the Crisium side and five
on the Grimaldi side) used throughout the observations, af-
ter carrying out several straightforward corrections to the
raw data. When the observed intensity readout is plotted
against the lunar phase for all nights, the data are quite scat-
tered around different means for each branch, as illustrated
in Figure 7, for the Crisium and Grimaldi pair used in Goode
et al. (2001). This figure, and that pair, are treated in detail
in this section. The raw results for all pairs take the same

form as the chosen pair that is used for Figure 7. On the face
of it, the large scattering of data in Figure 7 would seem to
preclude a precise determination of the earth’s albedo from
measuring the earthshine. However, most of the scattering
of data is due to known physical effects for which one can
systematically account, and then remove.

The first factor is the night-to-night change of the local
atmosphere, apart from the nightly atmosphere attenuation
which follows Beer’s law. Such a change affects the measured
crescent as a whole, and moonshine and earthshine from the
fiducial patches in precisely the same way, and hence, the
raw phase function can be corrected by treating the cres-
cent as a standard star (see section 4.1). This correction
does not alter the determination of A*, because the correc-
tion applies to both the earthshine and moonshine, while A*
is given by the ratio of the earthshine to the moonshine. The
second factor is the sun’s position, namely the declination
and right ascension, due to the changing angle of the sun-
light into the earth-moon system at the same lunar phase,
but in different synodic months. This changes the range of
well-illuminated latitudes both on earth and the moon from
one month to the other. To first order, we fit out the alter-
ation of the scattering introduced into the phase function.
(see section 4.2). Since it affects the moonshine and earth-
shine intensities in the same way, again A* is insensitive to
the change. The third known source of the scatter in Fig-
ure 7 is the moon’s libration, which changes the observed
intensity from the moonshine fiducial patches, but does not
affect the earthshine intensity (see Figure 2 in which the
non-uniformity of the moonshine near the limb is apparent,
but there is no such non-uniformity in the earthshine). To
first order, we model this effect as a linear function of the
libration and correct it for both the phase function and in
the moonshine intensity I, when using I, to calculate A*
(section 4.3). The results of these corrections are developed
in this section, one step at a time. We shall see that we can
determine the lunar phase function to 0.5%, which gives us
real confidence that observing the earthshine can yield a
precise reflectance for the earth.

Crisium Side

Crimaldi Side
3.5 T T T 3.5 T T

Intensity (x 1e10)
Intensity (x 1e10)
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—150 —-100 -50 0 0 50 100 150
Lunar Phase Angle Lunar Phase Angle

Figure 7. The intensity of the moonshine for the Cri-
sium side and Grimaldi side fiducial patches of Goode et
al. (2001) with a third order polynomial (including higher
order terms has no noticeable effect) fit for each. Clearly,
there is a roughly linear decrease in the intensity of the re-
flected light going from full moon to new moon.



In the last part of this section (4.4), we normalize the
overall lunar phase function to connect the right and left
branches of the lunar phase function by treating the oppo-
sition surge that occurs at small phase angles (Hapke, 1971;
Flatte et al, 1991; Helfenstein et al, 1997). The data here
are from the fullest of full moons and the one total lunar
eclipse we observed in Big Bear. The total eclipse enables
us to determine the ratio of the geometrical albedos of the
opposing pairs of fiducial patches.

4.1. Atmospheric Correction

The nightly fits of the moonshine intensity to Beer’s law
are quite good, and so the extrapolation to zero airmass
would seem quite reliable. However, there is an apprecia-
ble change in our lunar phase function (see Figure 7), for
the same phase, from month-to-month. As we shall see, the
prime cause of this is that, even after extrapolation to zero
airmass, the resultant intensity is subject to changes in the
local atmospheric conditions. It seems that the local atmo-
sphere is not a uniform plane, parallel gas, but rather we
have something more like a canopy superposed on a plane
parallel atmosphere. The canopy mutes the intensity by
the same amount for all airmasses, and therefore its effect
remains after extrapolation. Because of this, there is a devi-
ation in the intensity measured from the same fiducial patch
at the same lunar phase, but on different nights (that is, suc-
cessive lunar cycles). To solve this problem, we employed
the common practice of nighttime observers; when doing
absolute photometry they use standard stars to account for
the muting. We have found that the crescent of the moon
(the total area illuminated by sunlight) is our best standard
“star”. That is, we correct from night-to-night variations
using the correlation between the change of the moonshine
intensity and the crescent intensity.

In the extrapolation to zero airmass, we use a fifth degree
weighted polynomial fit for both the fiducial patch intensity
and the average crescent intensity over the area of the bright
portion as the way to determine the average of the intensity
at each lunar phase. In removing the canopy effect, we give
double weight to nights for which the lunar phase is less
than +5°. We do this because of the pronounced opposition
effect that gives a sharp increase in the moonshine intensity
when lunar phase approaches zero degrees (see §5.4). The
deviation of the measured intensity at each data point from
the fitting curve for the lunar phase function, in both the
moonshine case and the crescent case are obtained, and the
cross correlation between these deviations is calculated. For
the morning observations, for which the lunar phase is pos-
itive, we get a cross correlation of 0.73, and for the evening
when the lunar phase is negative, we obtain a quite similar
value of 0.77 (Figure 8). The relative correlations are de-
termined from a simple least-square linear fit between the
moonshine deviation and crescent deviation using

I, — I .
7'1__7: v :(I/OXQTZ'Q'FbO'l'Ui,

(21)

where I; is the observed fiducial patch intensity, C; is the
crescent intensity, I; and C; are the average fiducial patch
intensity and crescent intensity, respectively, at the same lu-
nar phase, and o; is the scatter about the linear least-squares
fit. Note that throughout this section I; is the final, fitted
intensity, which is derived by iterating the steps described in

sections 4.1-4.3. The coefficients ag and bg are derived from

the least square fitting of Equation (21). From Figure 8, it
is clear that ag is close to unity (morning/Grimali:0.8140.08
and evening/Crisium:0.74+0.07, error is +10), while the re-
spective bo’s are essentially zero — 0.002 and 0.001 — more
than two orders of magnitude smaller than ag. Therefore,
we determine the correct, relative zero airmass intensity, I/,
by removing the canopy effect by subtracting the linear term
in Equation (21) from the earthshine data, i.e.,

I{:Ii—aoxfixM.
%

(22)

The scattering among the datapoints is much reduced af-
ter this correction (see Figure 11b at the end of the section).
This correction is of comparable significance for the evening
data (lunar phase < 0) and the morning data (lunar phase
> 0), as the comparable cross-correlations imply.

4.2. Declination Correction

The second step in correcting the deficiencies in the ap-
parent lunar phase function is to remove variations arising
from the systematic change of relative position of the moon
to the plane of the earth’s orbit about the sun. The dif-
ference in right ascension between the sun and the moon
(hereafter, the “relative right ascension”) changes from 180
to -180°, which essentially determines the lunar phase, de-
fined as the angle from between the moon-earth line and the
sun-moon line, see Figure 1. However, there is an ambigu-
ity in the lunar phase angle that makes the apparent lunar
phase function multi-valued. In detail, the difference in the
declination between the sun and the moon (hereafter “rel-
ative declination”) changes as well, since the orbital plane
of the moon around earth is inclined to that of the earth
around the sun. Toward the full moon, the relative declina-
tion also becomes important in determining the lunar phase.
Then, at the same lunar phase, but on different nights (that
is, different months), the position of the moon may be dif-
ferent, and this difference alters the readout intensity of the
fiducial patches. To correct for this effect, for a given lunar
phase near the full moon, we choose a standard position of
the moon and normalize the readout intensity of different
positions to this standard position. The standard position
is the one for which the relative declination is zero, i.e., the
moon is in the plane of ecliptic, and the lunar phase is equal

Morning Observations (152 nights) Evening Observations (168 nights)
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Figure 8. The deviation of the moonshine fiducial patch
intensity from average against the deviation of the overall
intensity of the crescent. Left: data points from morning
observations of Grimaldi; right: data points from evening
observations of Crisium. The solid lines in each panel show
the linear fit to each cluster of points.



to the relative right ascension, i.e., a total lunar eclipse. The
normalization is made as follows:

I — I, = a1(P; — Pi,ra) + b1 D; + c1 + 04, (23)
where I; is the observed intensity, I; is the average intensity
at the same lunar phase as I; (from the ultimately deter-
mined lunar phase function), (P; — P; ra) is the difference
between the lunar phase and the relative right ascension, D;
is the relative declination, and a1, b1, and ¢; are fitting pa-
rameters, which are determined from the least-square fitting
using all the observed intensities. The fitted parameters, a1
(morning/Grimaldi: —0.003 & 0.002 and evening/Crisium:
3.4e”® £+ 7.0e — 5), by (morning/Grimaldi: —0.4.7¢™5 +
0.0002 and evening/Crisium: 0.0007+0.0002) and ¢; (morn-
ing/Grimaldi: 0.009 + 0.008 and evening/Crisium: 0.009 +
0.009) are all quite small. All quoted errors are +1o. The
normalized intensity, I}, is derived by removing the relative
right ascension and declination:

-Iz{ =1, — [a1(P¢ —Pi,RA)+b1Di]. (24)
The ¢ term is regarded as part of the errors (o3).

This correction is only made for lunar phase between -15
and +15 degrees since the effect of the relative position of
the moon is only important around the full moon. How-
ever, the modest improvement due to this correction reveals
barely apparent changes in the data points.

4.3. Libration Correction

The third step in rectifying the apparent lunar phase
function requires removing the effects of latitudinal and lon-
gitudinal lunar libration. Since the orbit of the moon around
the earth is not in the equatorial plane of the earth, a ter-
restrial observer alternatively sees the north pole and south
pole of the moon during each orbit. This is the latitudinal
libration. Further, the slightly elliptical orbit of the moon
has the consequence that the moon moves more slowly at
apogee than at perigee, and therefore is seen to be wobbling
around its axis of rotation. This is longitudinal libration.
An additional, very small dynamical libration arises because
the moon is prolate, and its pointing wanders. The dynam-
ical libration adds to both the latitudinal and longitudinal
librations. These librations allow us to see about 60% of
the moon’s surface. As a result of both kinds of libration,
for different cycles of the lunar orbit, even at the same lu-
nar phase, we would expect changes in the positions of the
fiducial patches on the lunar disk. The readout intensity
thus changes as a function of the geometric position of the
fiducial patches on the lunar disk. The longitudinal and lat-
itudinal librations cause the apparent lunar phase function
to be multi-valued. To first order, we derived a description
of the deviation of the observed intensity from the averaged
intensity as a linear function of the longitudinal and latitu-
dinal librations, which goes as:

I — L = azL? + szf +c2 + oy, (25)
where the I; — I; are the deviations of each night from the
mean, and where L is the longitudinal libration and Lf is
the latitudinal libration. Here, L and Lf really measure the
position of the lunar pole in the sky with respect to its mean

position, so that all the kinds of libration are taken into ac-
count. From a least-squares fit, we obtain the coefficients a»
(morning/Grimaldi: 0.0019 % 0.0004 and evening/Crisium:
—0.0018 + 0.0004) and b2 (morning/Grimaldi: 4.2e — 5 +
0.0003 and evening/Crisium: —0.0003 £ 0.0004), while ¢, is
1-2 orders of magnitude smaller than a». Again all quoted
errors are £1o. Since the magnitude of the as’s are about an
order of magnitude greater than the b>’s, the longitudinal
libration is more significant than the latitudinal libration.
Figure 9 shows the result of fit, and, in particular, that the
fit describes the data, in that it can be seen that the ob-
served scattering at this step is mainly accounted for by the
libration. For the determination of Figure 9, we used 152
mornings and 168 evenings, and the correlation between the
fit and the data is 0.44/0.52 respectively. Using the param-
eters from the fit, we then normalize the intensities at all
lunar phases to the case of zero libration with the equation:

I = I; — (asL¢ + boL?). (26)

To check the validity of the libration correction, we per-
formed the libration correction again — but doing it before
performing the atmospheric correction described in §5.1. We
next performed the atmospheric correction (which still dom-
inates) and the declination correction. At that point, we
performed the libration correction again, and we found that
I; — I; does not have a significant correlation with the li-
bration. In particular, the parameters from the linear fit of
Equation (25) are reduced by an order of magnitude. This
test not only confirms the validity of the libration correc-
tion performed above, but also guarantees that the three-
step corrections can be performed in any order. However,
it remains for us to determine the lunar phase function for
small phase angles.

4.4. Opposition Effect

To this point, the lunar phase function is incomplete be-
cause it is not normalized, and we have not determined its
functional form for the smallest phase angles. To do these,
we need to know the phase function for small phase angles,
and that means that the final lunar phase function for each
fiducial patch needs to be normalized to the full moon op-
position peak. In reality, the moon is not observable at zero
lunar phase because the shadow of the earth would occult
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Figure 9. The deviation of the moonshine fiducial patch
intensity (after the first and second step corrections) from
average against the deviation as a fitting result from Equa-
tion (25). Left: data points from morning observations;
right: data points from evening observations.



the moon, as the earth’s shadow occupies about +0.8°. So
far, the smallest phase we have reached is +1.0° on the night
of November 29, 1993, when a total lunar eclipse occurred
over Big Bear. On that night, the sky was clear and stable
throughout, and observations were made both before and
after the total eclipse, covering lunar phase angles of magni-
tude ranging between about 1° and 2°, which offers a unique
dataset to investigate the slope of the opposition surge ef-
fect for all fiducial patches on both the Grimaldi and the
Crisium sides.

The images taken during the eclipse were processed, and
the intensities of the fiducial patches were read out as de-
scribed in Section 4.1. The atmospheric attenuation has to
be corrected to obtain the real moonshine intensity. How-
ever, throughout the night, the evolution of the moonshine
intensity was controlled not solely by the changing airmass,
but also by the changing phase angle. This latter effect is
appreciable because of the strong opposition effect at small
lunar phase angles. As a result, the shape of the intensity
evolution for the two patches deviates strongly, compared

Table 3. Opposition Effect v’s, see Equation (27)

Patch 1 2 3 4 5
Grimaldi side 0.084 0.078 0.083 0.079 0.083
Crisium side 0.086 0.079 0.076 0.083 0.083
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Figure 10. Fit of lunar eclipse data obtained on Novem-
ber 29, 1993. (a) Beer’s law fit of the Crisium side (Equa-
tion 19); (b) Composite Beer’s law plus opposition effect fit
on the Crisium side (Equation 27); (c) same as (a) on the
Grimaldi side; (d) same as (b) on the Grimaldi side.

to the precision in the data, from Beer’s law (see Figure
10a and c). Thus, Equation (19) can no longer produce a
reasonable fit.

We developed a simple solution to this problem under
the reasonable assumption that the opposition effect is lin-
ear for very small phase angles, say, from 0 to 5° (Hapke,
1971 and 1998). During the eclipse, the phase angle changes
by less than two degrees for either the Crisium branch or the
Grimaldi branch. To determine the slope of the opposition
peak for each of the ten fiducial patches, we represent the
observed intensity by:

Ii = Io X (1 — ’)/|P¢|) X eiam, (27)
where I; is the observed intensity at phase angle |P;| (in
degrees) and airmass 7;. In contrast to Equation (19), Io
describes the intensity at both zero airmass and zero phase
angle. The second term on the right side describes the lin-
ear increase of the phase function as the lunar phase goes to
zero. The last term describes the exponential atmospheric
attenuation; i.e., Beer’s law, where « is the atmospheric ab-
sorption coefficient for the moonshine.

In applying Equation (27), we used the observed I;, after
correcting for libration (section 4.3) at lunar phase P; and
airmass 7); in Equation (27) above, and made a least-squares,
non-linear fit to obtain «, I, and the linear opposition effect
coefficient, =y, and corrected for pennumbral shadowing for
the very smallest phase angle data. The fit was made for
all ten fiducial patches. We did not correct for the declina-
tion because the moon is in total eclipse, and that correction
should be quite small. We collected about 40 data points
for the fit on each side of the moon; i.e., before and after
totality, and the standard deviation of the final fit is at the
level of 0.5%. Figure 10b and d reveal the improvement in
fitting results for one pair of fiducial patches using Equation
(27) instead of Equation (19). The improvement is typical
of that for all ten patches. From Figure 10, it is also clear
that Equation (27) accurately describes the composite effect
of the opposition surge and Beer’s law. The fitted opposi-
tion peak slope parameter, -y, was then used to normalize
the phase function for each of the fiducial patches. Figure 11
shows an example of the final lunar phase function normal-
ized to the opposition peak. Of course, each fiducial patch
has its own lunar phase function. In detail, for lunar phase
of 5° in Figure 11, we used the slope, 7, determined for very
small angles to extrapolate to the intensity at zero lunar
phase from that at 5°, i.e., I(0) = 1i(753<5. Then, we nor-
malized that branch of the phase function, using its v and
I(0)=1 to fix I(5). Combining our knowledge of I(5) with
the relative phase function indicated by the +’s in Figure 11,
we obtained the right branch of that figure. The normaliza-
tion removes the ratio of the geometrical albedos between
the two patches, which is restored in Equation (28). The
eclipse does not give us data for lunar phase 2° < |0] < 5°,

Table 4. ’;—‘; (Crisium Side/Grimaldi Side)
Patch 1 2 3 4 5
6 1.121 1.130 1.141 1.086 1.109
7 1.041 1.050 1.060 1.009 1.030
8 0.919 0.926 0.935 0.890 0.909
9 0.983 0.991 1.001 0.953 0.972
10 0.989 0.996 1.006 0.958 0.978




where we have also assumed a linear form for the phase func-
tion. Nights at these small phase angles occur at the fullest
of full moons, and we have a few of them. We will enrich our
data in this region as time goes on, and can further sharpen
our phase function. If there were a systematic error here,
it would shift all of our Bond albedos by the same amount.
We expect such a systematic error is actually quite small,
but we would be able to re-calibrate our present results in
the light of future data.

In Table 3, we list the values of the derived opposition
coefficients, -y, for all ten fiducial patches. The value of ~y
for all fiducial patches is approximately 0.08 per degree, in-
dicating that when lunar phase changes from six degrees
to zero degrees (full moon), the intensity doubles. This is
the well-known opposition surge which had not been quan-

BT AT AN AN AN

Normalized Intensity
o
o

-100 -50 0 50 100

i
13
o

Lunar Phase (degrees)

Figure 11. The top panel shows the apparent, relative lu-
nar phase function from the raw data, for which there are
points down to 2°. The function is made relative by nor-
malizing it to unity at phase angle 0°, which means that
the ratio of the true right and left branch intensities yields
the ratio of the geometrical albedos between Crisium and
Grimaldi. The peak near small phase angles represents the
opposition effect. Data from a total eclipse are used to con-
nect the positive and negative phase branches of the lunar
phase function. No eclipse data are shown in this figure, but
the result of the eclipse data is the opposition peak. The
second panel from the top shows the result after including
correction for the local atmospheric effects using the lunar
crescent as a guide star. The third panel also includes the
correction for lunar declination. The fourth panel includes
the correction for lunar libration. The fit shown in each
panel is the final one resulting from all of the corrections
described in section 5.

titatively determined previously. The formal error in the
determination of v is about 0.5%.

The parameter Iy is also used to obtain the ratio of the
earthshine patch reflectivity to the moonshine patch reflec-
tivity pa/ps. Table 4 gives the ratios determined between
each of the five Crisium patch reflectivities to the each of
Grimaldi patch reflectivities.

In Figure 11, we show the lunar phase function with fi-
nal fit in the lowest panel. The same fit is shown in the
other three panels, as well. The points in the top panel rep-
resent a normalized version of Figure 7. The second panel
shows the result after correction for local atmospheric ef-
fects, which is the largest correction. The third and fourth
panels show the effects of lunar declination and libration,
respectively. The lunar phase function is produced from a
fifth degree weighted polynomial fit to the corrected data.
After each step of correction, the standard deviation of the
fit is reduced from originally 0.05/0.05 (evening/morning) to
eventually 0.01/0.01, with the phase function normalized to
unity. A restricted regularized fitting is performed as well,
which parameterizes the intensities at 181 bins (correspond-
ing to lunar phase 0° to 180°).

These 181 parameters from the fitting describe the lunar
phase function, in that the intensity of any lunar phase is
the linear interpolation between the values at the two grids
into which the lunar phase falls. Note that since there are
no data points beyond 150° degrees, the phase function fit
beyond this range is not reliable. Similarly, there are not
enough data points within +5°, and so, we used the eclipse
data to determine the fitted peak in Figure 11 by treating
opposition effect at small phase angles (near the full moon).
From the final fit, the estimated error of the mean is at the
level of 0.5%; thus, we have measured the lunar phase to
0.5%. How does the phase function in the lowest panel of
Figure 11 compare with earlier efforts to determine it, like
those of Danjon?

In Figure 12, we plot Danjon’s fitted phase function
against our corrected one. Danjon used slightly different
fiducial patches, but that is not the source of differences,
because the phase function shown is about the same for all
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Figure 12. Danjon’s phase function (solid line) is plotted
against lunar phase. Using Figure 11d, the dashed line is
our phase function for evening observations and the dotted
line for morning for the fiducial patch of Figure 11.



of our fiducial patches. Rather, the primary source is the op-
position surge which was unknown in Danjon’s time. There
is a clear offset in the Danjon phase function which would
yield uniformly higher albedos than the true phase function.
For our phase function, we have eliminated this erroneous
overestimate, by ~20%, of the earth’s reflectance introduced
by the phase function in earlier incarnations of earthshine
studies, like those of Danjon.

5. Precision of the Determination of the
Earth’s Nightly Albedo

The effective albedo for an individual night is calculated
from the earthshine measurement for that night by combin-
ing equations (9) and (17):

3 pbfb(e) Ia/Ta Rgm st

A" R R By ST - ey e 28
O = 2 pufol@0) 1/Ty B2 oo Y
where %—5‘; is the ratio of the earthshine intensity to the

moonshine intensity in two opposing fiducial patches, after
correcting for airmass. The ratio between the physical reflec-
tivity of the two opposing fiducial patches, 2% is determined
from the lunar eclipse data taken at BBSO on November 29,
1993, as discussed in the previous section. The lunar phase
function for the bright side, f,(0), is used in the formula to
account for the geometrical dependence of the reflectivity of
the moon, while f, (o) accounts for the fact that the earth-
shine is not exactly retroflected from the moon (6p<1°). In
our analysis, 6o is taken as the angle between the observer’s
position and the mean of the sub-solar point (position on
the earth’s surface of the solar zenith) and the sub-lunar
point (position on the earth’s surface of the moon’s zenith)
with the apex of the angle being defined with respect to
the fiducial patch under consideration, see Figure 1. We
assume that the moonshine and earthshine have the same
lunar phase function for each fiducial patch. Thus, we take
fa(Bo) from the appropriate moonshine phase function. The
earthshine is slightly bluer than the moonshine because of
Rayleigh scattering by the earth’s atmosphere. This small
effect is subsumed in the lunar geometrical albedos.

From Equation (28), one may surmise that the observa-
tional errors arising from measuring A* from two opposing
fiducial patches come from the errors in the readout intensity
from the moonshine and earthshine fiducial patches, the er-
ror in the transmission of the BS filter (about 0.8%), and the
error in the determination of lunar phase function. The ratio
Pb can be regarded as the relative normalization of the phase
fpﬁznctions of the opposing fiducial patches. The standard de-
viation of the lunar phase function can be determined down
to 0.5% from a co-variance calculation with a comparable
uncertainty for the ratio 2. The standard deviation of the
Beer’s law fitting of the moonshine for each night is taken
as the error of the moonshine intensity. This gives a value
of 1.1%. For the case of the earthshine, the scattering of the
data is due to both the noise and the real physical changes in
the terrestrial albedo. The average standard deviation from
Beer’s law fitting of the earthshine intensities is 1.9%. Con-
servatively speaking, if half the amount of such scattering
comes from the real physical change on average, the error
in nightly earthshine intensity measurement is about 1.0%.
Adding up all the errors and assuming they are indepen-
dent, we get a nightly measurement error of nearly 2%. If
one regards the measurements from different pairs as being
independent, the 2% is reduced to about 1%.

The precise determination of the effective albedo for one
night cannot yield a bond albedo; rather, one needs to in-
tegrate the effective albedo for many nights (over as wide
a range of lunar phase angles as possible). If we combine
nights to obtain, say, a seasonal average, then the total er-
ror will be smaller, but no smaller than that associated with
the mean values of the various lunar phase functions and
their relative normalizations. We regard the determination
of the ratio Z’;—s as being the most likely source of system-
atic errors. Measurements of the opposition effect in future
eclipses will allow us to determine if there are systematic
errors, and correct the albedos in retrospect.

To determine the Bond albedo, A, from our earthshine
observations we need to integrate A*(6) over all phases of
the moon. Combining Equations (6), (7) and (9), we find

A= § / " 404" (8) 1. (6) sin 6.

(29)

There are two basic problems using this approach to de-
termine the Bond albedo. The first, and more significant
problem, is that we cannot measure the earthshine for all
phases of the moon. This becomes a problem primarily for
lunar phases near the new moon, where the earth is most
nearly Lambertian. The second basic problem in using the
earthshine to determine the albedo arises because the orbit
of the moon traces out an ellipse in the full three dimen-
sion space surrounding the earth, so we cannot measure the
earthshine in all directions. Therefore, we are insensitive to
any azimuthal anisotropy in the earthshine. In the following
paper of this series, we will demonstrate that the anisotropy
is not significant, and one can account for it. We do this
by taking advantage of full spatial coverage provided by the
simulations. For the first problem, we will show that we
can obtain a quite reliable Bond albedo from the earthshine
data. These are among the subjects of Paper II of this series.

Appendix A: Earthshine Instrumentation
and Data Acquisition

Earthshine observations are currently being carried out
at BBSO. The earthshine telescope is aligned with, and
mounted atop the 65 cm solar telescope. Figure 13 shows a
schematic of the earthshine telescope.

.1.1. Hardware

The basic optical components of the earthshine telescope
consist of an f/15 telescope primary, which is a 15 cm di-
ameter air-spaced doublet. The telescope tube is attached
and aligned with the 65 cm solar telescope, which enables
us to use the large telescope’s drive software, permitting
tracking following the moon’s variable rate. The tracking
rate is updated, via software, every thirty minutes to match
the changing lunar motion in the east-west direction. Minor
north-south corrections are done with the telescope control
paddle as needed during the course of the night’s obser-
vations. The 65 cm telescope is regularly re-balanced for
equipment changes so that tracking stability is not a prob-
lem even with long exposures. At the end of the tube is a
stray light field stop. The incoming moonlight passes the



field stop, and then enters a light-tight optical assembly box
that holds the filters and camera optics.

In the box, just behind the tube field stop and just before
prime focus, is the earthshine neutral density filter switcher.
Two filters are placed in the switcher. The first neutral den-
sity filter is a Schott NG3 2mm (the laboratory measured
transmission of the filter, used for the first two years of ob-
servations, is 0.0115, as a whole, from 4000-7000 A) for the
bright side (BS) measurements. The BS or moonshine fil-
ter covers the entire field of view and is in place to prevent
camera saturation and to provide a reasonably long expo-
sure time (several 100 ms) compared to the smallest expo-
sure time for the camera (10 ms). Thus, to determine the
absolute value of the earth’s reflectance, one needs to know
precisely the transmission of this filter (§4.3). The second
filter is a Schott NG10 2mm (transmission is about 2 x 107°
over 4000-6000A, although its precise value is irrelevant for
our observations), which is essentially a blocking filter to cut
off the bright side of the moon to permit the dark side or
earthshine (ES) observations. The blocking filter covers the
bright side of the moon to permit long, dark side exposures
(~60-150 s) to get optimal signal to noise for the ES im-
ages. The blocking filter is carefully placed within the filter
holder, by hand, at the beginning of each observing session.
Its location, designed to cover the terminator, depends on
the phase and libration of the moon.

The prime focus is after the filter holder, and it is closely
followed by a flat field lens. Next in the optical train are two
near IR filters, which stop any light beyond 7000 A from
reaching the camera. An iris behind the near IR filters acts
as a further stray light stop. Behind the iris is a camera
lens that focuses the lunar image on the CCD. Between
this lens and the camera is a space for a second filter wheel
(not shown), which can be used for narrow band measure-
ments. All elements are rail mounted for linear adjust-
ments, and lens elements are in moveable y — z mountings
for fine adjustments. All fine-tuning was done in the Fall
of 1998, and nothing has been changed on the system since
the start of data acquisition in December 1998. The sys-
tem was “frozen” to limit possible errors in calibrating the
lunar phase function. Flat field images help to point out
the location of occasional dust particles that get into the
optics. Compressed air removes most particles, and when
necessary, elements are removed for cleaning, and then are
carefully replaced to preserve optical alignment.

The CCD camera used in our current earthshine obser-
vations is an Apogee 7. The camera is a 512 X 512 16-bit
scientific system with a SITe back-illuminated, thinned sili-
con chip. This chip, which is one of SITe’s highest grade, is
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Figure 13. The optical set-up of the earthshine telescope.

designed for higher quantum efficiency than unthinned front
illuminated chips — this advantage is most apparent toward
the blue. One drawback of the higher efficiency SITe chip is
its sensitivity to “after-images” caused by exposure to UV.
Testing the earthshine system to limit this effect resulted
in the following observing procedures: 1) The UV from the
BS images is reduced by the BS (NG3) filter. 2) The worst
after-images show up in the ES images on the unfiltered half
of the image — which are of long exposure. It was found that
a series of subsequent, short BS images, the UV residual im-
age was removed before the next long earthshine exposure.
3) Careful examination of dark current and flat field images
taken during the course of observations is done to confirm
this, night by night.

Initial testing demonstrated a linear response over the
camera’s entire 16-bit range. To check for change in the
camera’s response with time, a calibrated radiometer was
purchased to check the camera’s response during each new
moon. Dome flats are taken in varying illumination to get
pixel count versus intensity. The radiometer is an IL 1700,
a NIST traceable Silicon photodiode radiometer. Once a
year, the radiometer will be returned to International Light
for re-calibration.

.1.2. Observations

After initial tests, our current round of earthshine obser-
vations began in November 1998. A typical raw image is
shown in Figure 2. The five pairs of fiducial patches used
in the data reduction (see section 3) are also indicated. The
camera’s graphic user interface, in C code, was supplied by
the manufacturer, and it was modified to efficiently handle
the routine earthshine observations. The nightly observa-
tions follow a simple set of procedures, which are mostly
automated. During the course of observations BS, ES, dark
current, and flat field images are taken regularly.

The first 8 months of observations covered lunar phases
between 0° and £140°, which is about 21 days a month.
The initial observation over this wide range of phases was
necessary to determine the lunar phase function and prove
its repeatability. During the first 8 months, for the phases
near the full moon (-40° through 0° to +40°), ES images
were not taken because both fiducial patches were in, or so
near to sunlight that ES measurements were unreliable (see
cartoons in Figure 1). On these nights only BS, dark cur-
rent, and flat fields, were taken to determine the scattering
of light from the fiducial patches as a function of the phase
of the moon. The lunar phase function was determined by
July 1999, so that the BS only nights were dropped — except
for observations of the full moon. Full moon observations
are still taken to determine the role of the opposition effect
(Flatté et al. 1991) in the lunar phase function (phases -15°
to +15°). Current earthshine observations cover about 14
days per month, and cover lunar phases between +40° to
+150° centered on the first and last quarters of the moon
when we have optimal conditions for measuring the earth-
shine — close to full-earth with a few hours of observations
being possible. Data rates vary depending on phase. An av-
erage night will give about 1 image per minute. This means
that the number of raw images saved for data reduction,
varies between 100 to 600 per night.

Appendix B: Measuring the Transmission
of the Bright Side Filter

A precise determination of the earth’s reflectance from
observing the moon depends on an accurate measurement of



the ratio of the true earthshine intensity to the true moon-
shine intensity. This determination is complicated by the
fact that the moonshine is so bright that when we measure
it, we must use a filter (see Figure 2) that reduces the inten-
sity of the moonshine by about 99%. The reduction enables
us to have a reasonably long exposure time (of order a few
100 ms) compared to the shortest possible exposure time of
the camera (10 ms). When we observe the earthshine, the
moonshine or BS filter is removed and the much stronger,
blocking filter is inserted to block the moonshine to prevent
camera blooming during the much longer exposures. Thus,
to know the true ratio of the earthshine to moonshine inten-
sity, we must also precisely determine the transmission of the
moonshine filter at the point through which the moonlight
passes (point-to-point variations could well be significant).
This fact became abundantly clear after October 13, 2000
when the original filter was destroyed, and was replaced by
one that was comparable in the lab specifications for the
transmission over the whole filter. Initially, we assumed that
the transmission of the new filter was the same as the old
one. However, we found that the observed moonshine inten-
sity noticeably increased, indicating that the new filter has
a significantly larger transmission than the old filter.

In the observations, the moonshine filter, MS, is placed
at a fixed position in the focal plane covering the entire lu-
nar image, so that the light always passes through the same
point on the filter. This is important because there is some
point-to-point variation in the transmission of the filter. In
our effort to precisely determine the transmissions of the
old and new BS filters at the focal point of the lunar im-
age, we first employed identical approaches for both of the
filters. To measure the transmission of the old filter, we
re-analyzed thirty nights of moonshine and earthshine data
that we had in-hand for nights near the new moon - where
the earthshine signal is most intense. To illustrate the re-
analysis procedure, one can look at Figure 14 for guidance.
For that night, with the old filter, we measured the total
earthshine intensity in five parallel strips, somewhat wider
than the fiducial patches and running from the earthshine
fiducial points toward the moonshine crescent. In that fig-
ure, the five strips are shown together as a striped, bright,
four-cornered patch. Each strip in the bright patch runs
from the edge of the moon and is 5° wide in latitude and
30° long in longitude. That way, each strip would have a
statistically significant number of counts in the earthshine
region, even for the relatively short exposure times of a few
hundred milliseconds, used on that, and other nights, for
each data point with the BS filter in place (but without the
much stronger blocking filter in place). The lunar phase in
Figure 14 is +134°. Large magnitude phase angles are cho-
sen so that the earthshine is the brightest, while the stray
light the smallest. The determination of the transmission of
the old BS filter is shown for that typical night in Figure 15.
The dark side of the moonshine and the earthshine inten-
sities are each extrapolated to zero airmass, and corrected
for the small effect of stray light, (as described in §4.1), and
their ratio yields a transmission of 0.0114+0.005 for that
night. The error weighted mean transmission for all thirty
nights is 0.011274+0.00011 for the old filter. Implicit in this
approach to determining the broadband transmission of the
filter is the assumption that the spectrum of the earthshine
and moonshine are roughly the same; this assumption works
here because the transmission curve of the filter is flat over
visible wavelengths. Most of the noise in the result arises
from the short exposure time for the MS filter covered obser-
vations. The 0.0112740.00011 is within the factory quoted
errors of the 0.0115 value given by Schott.

For the new filter, we have re-analyzed twelve nights
of data in the same way and find a transmission of
0.013384+0.00017 for the focal point, whereas the factory-
reported average across the filter is 0.0114. The latter trans-
mission is nearly identical to that of the old filter, but quite
far from 0.01338+0.00017. The larger transmission at the
focal point accounts for the apparent rise in moonshine in-
tensity after October 13, 2000. We will continue collecting
more data on the transmission using future data. However,
we have a more powerful and more precise cross-check in
hand — using lunar phase function data on the crescent and
moonshine, which we know to 0.5%.

Analyzing all of our good nights of moonshine observa-
tions, with the new and old new filter, at all phases, we have
constructed for each a lunar phase function — the change in
brightness with lunar phase for the moonshine and cres-
cent intensities. From all these nights, we have selected the
nights during the period for which the old filter was used,
and then we calculated a second-degree polynomial fit to
the lunar phase data. The data for these nights have been
reduced using a transmission value of 0.01127. After that,
we analyze the phase function for the nights taken with the
new filter and calculate the standard deviation of the values
to the lunar phase function fit to the old data, but leave the
new filter transmission as a variable.

Our procedures consist of multiplying the intensities of
the new phase function data by a factor between 0.9 to 1.4
in steps of 0.0001, and for each case calculating the stan-
dard deviation to the old data fit. The agreement of the

2000 February 1st

Lunar

Figure 14. This image of the earthshine on the night of
February 1, 2000 shown is one with the blocking filter, which
enables long exposures of the earthshine. The bright, rectan-
gular patch indicates the area of five strips used to compare
the earthshine intensity with and without the moonshine
filter (BS filter), so as to determine the transmission of the
BS filter. The lunar phase was +134° that night, and so the
earthshine signal is relatively strong. The crescent is not vis-
ible through the strong blocking filter in the original image,
but has been restored here for reference.



new data with the fit to the old data will be optimal when
the standard deviation is minimized.

We find the best agreement between the two lunar phase
functions when the transmission of the new filter is 0.0132
(0.01319 for the moonshine and 0.01322 for the crescent).
This is excellent agreement with the transmission deter-
mined from the first method. Thus, we have precisely de-
termined the transmission of the new filter to the same pre-
cision as the old filter, so that we use 0.0132+0.0001 as its
transmission after including errors in the phase function. As
we gather more data on the new filter, we can determine its
transmission to the same precision to which we know the lu-
nar phase function, and then the error on the transmission
can be reduced to about £0.00005. Following that, we can
use this information to reduce the quoted precision of the
old filter to that for the lunar phase function determined for
the old filter.

Earthshine with filter
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Figure 15. The upper panel shows the observed, BS filter-
blocked earthshine intensity as a function of airmass on
February 1, 2000. The “+” signs in that panel represent
the intensity of one of the stripes. The linear fit to the data
has been extrapolated to zero airmass with that result being
indicated by the asterisk, which is the left-most mark on the
fit. The lower panel shows the same type of data, but with-
out the BS filter. The ratio of the two intensities, for that
night, extrapolated to zero airmass, and corrected for the
small effect of stray light, implies a MS filter transmission
of 0.011440.0005. The lunar phase that night was +134°.
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Figure 1:A not-to-scale cartoon of the sun-earth-moon
system viewed from the pole of earth’s orbit. In the top
panel, the earth’s topocentric phase angle, o, with respect
to BBSO is defined. The plot also shows the moon’s se-
lenographic phase angle, 6, with respect to one of the fidu-
cial points (Grimaldi) used in the observations made from
BBSO (also indicated). S is the angle between the sunlight
that is incident somewhere on the earth and reflected, as
earthshine, to Grimaldi. 6p(= 8 — ) is the angle between
the earthshine that is incident, and reflected from the moon.
The path of the earthshine is indicated by the arrows. 6o
is of order 1°, or less. In the lower panel the same diagram
is drawn for a negative lunar phase angle, and extra fea-
tures like the moon’s orbit around the earth are indicated.
On both panels the aspect of the moon as would be seen
from BBSO is also indicated in a box. The light-shaded
areas of the earth indicate the aproximate latitude range
that contributes to the earthshine. Note how for positive
lunar phases (top panel) the earthshine contribution comes
from latitudes west of BBSO while for negative phase (lower
panel) angles it comes from latitudes east of BBSO.

Figure 2: The moon showing the bright side and the
earthshine. The Grimaldi side is in the moonshine and the
Crisium side is in the earthshine. Our ten fiducial patches
used in the observations made from BBSO are indicated.
The crosses give the approximate positions of Danjon’s fidu-
cial patches. Goode et al. (2001) used one fiducial patch on
each side, and on the Crisium side it is the one closest to
the white cross, while on the Grimaldi side, it is the one
immediately above the black cross. In the image, the lu-
nar phase is 115°.9, near a declining quarter moon. Unlike
the moonshine, the earthshine is flat across the disk. The
flatness is due to the uniform, incoherent back-scattering
(non-Lambertian) in contrast to the forward scattering of
sunlight occuring in the sunlit lunar crescent surface.

Figure 3: Illustration of the background subtraction for
earthshine images. The image on the left shows a back-
ground cone around a fiducial patch, within which the in-
tensity of the background points are read out to make a fit
as a linear function of the distance from the lunar center.
For the image shown, the intensity inside the cone has the
background subtracted already. The plot on the right shows
the decline of the off-limb intensity as the background point
gets further from the lunar center, and the overplotted thick
grey line indicates the least-square linear fit.

Figure 4: In each of the four tryptics of the figure
the intensity per unit (lunar) area of the moonshine (top
panel), the crescent (middle panel), or the earthshine (bot-
tom panel), is plotted against time (on the left) and airmass
(on the right). These intensities are data count values read
from the CCD, corrected for all the steps indicated in section
3.1, and divided by the lunar phase function. In the case of
moonshine and crescent intensities, the value has been also
divided by the transmission of the bright side filter. The
“4+”’s indicate observed data points, and the solid lines are
the fits to Beer’s law. Upper siz panels: data from the night
of September 5, 1999, demonstrating a typical good night,
and the standard deviation of the fitting is 0.007, 0.005,
0.007 (from top to bottom). Lower siz panels: data from
the night of September 17, 1999, demonstrating a typical,
partly cloudy night, and the standard deviation of the fitting
is 0.219, 0.183, 0.077 (from top to bottom).

Figure 5: The moonshine, crescent and earthshine inten-
sities and their Beer’s law fit for the night of 2000 January
28, showing that while the moonshine and crescent inten-
sities follow Beer’s law very well, the earthshine intensity

evolution deviates from Beer’s law. The standard devia-
tions of the fits are 0.004, 0.005, 0.014, respectively. The
fact that the fit is poor only for the earthshine implies size-
able short-term variations in the earth’s effective albedo as
seen from BBSO due to a combination of factors including,
among others, the earth’s rotation, anisotropic reflectance
and weather changes.

Figure 6: The variation of the atmospheric extinc-
tion coefficients for the crescent, (a.), moonshine (a,,) and
earthshine (ae). Panel (a) illustrates a,, (for five fiducial
patches as indicated by different symbols) against a. from
which it is clear that the crescent and moonshine patches
are very much alike; (b) shows a., of four out of five fidu-
cial patches (as indicated by different symbols) vs. the fifth
fiducial patch, illustrating that a,, is virtually the same for
different patches (note the equivalence of each linear, least
squares fits to the data for each patch); (c) shows a. for four
out of five fiducial patches (as indicated by different sym-
bols) vs. the other fiducial patch, showing that e is also the
same for different fiducial patches in the earthshine; and (d)
shows a. (of all fiducial patches in earthshine) against ac,
which is consistent with the earthshine being bluer than the
moonshine. The various straight lines in each panel indicate
a least squares fit to the appropriate data.

Figure 7: The intensity of the moonshine for the Cri-
sium side and Grimaldi side fiducial patches of Goode et al.
(2001) with a third order polynomial (including higher order
terms has no noticeable effect) fit for each. Clearly, there
is a roughly linear decrease in the intensity of the reflected
light going from full moon to new moon.

Figure 8: The deviation of the moonshine fiducial patch
intensity from average against the deviation of the overall
intensity of the crescent. Left: data points from morning
observations of Grimaldi; right: data points from evening
observations of Crisium. The solid lines in each panel show
the linear fit to each cluster of points.

Figure 9: The deviation of the moonshine fiducial patch
intensity (after the first and second step corrections) from
average against the deviation as a fitting result from Equa-
tion (25). Left: data points from morning observations;
right: data points from evening observations.

Figure 10: Fit of lunar eclipse data obtained on Novem-
ber 29, 1993. (a) Beer’s law fit of the Crisium side (Equa-
tion 19); (b) Composite Beer’s law plus opposition effect fit
on the Crisium side (Equation 27); (c) same as (a) on the
Grimaldi side; (d) same as (b) on the Grimaldi side.

Figure 11: The top panel shows the apparent, relative
lunar phase function from the raw data, for which there are
points down to 2°. The function is made relative by nor-
malizing it to unity at phase angle 0°, which means that
the ratio of the true right and left branch intensities yields
the ratio of the geometrical albedos between Crisium and
Grimaldi. The peak near small phase angles represents the
opposition effect. Data from a total eclipse are used to con-
nect the positive and negative phase branches of the lunar
phase function. No eclipse data are shown in this figure, but
the result of the eclipse data is the opposition peak. The
second panel from the top shows the result after including
correction for the local atmospheric effects using the lunar
crescent as a guide star. The third panel also includes the
correction for lunar declination. The fourth panel includes
the correction for lunar libration. The fit shown in each



panel is the final one resulting from all of the corrections
described in section 5.

Figure 12: Danjon’s phase function (solid line) is plot-
ted against lunar phase. Using Figure 11d, the dashed line is
our phase function for evening observations and the dotted
line for morning for the fiducial patch of Figure 11.

Figure 13: The optical set-up of the earthshine tele-
scope.

Figure 14: This image of the earthshine on the night of
February 1, 2000 shown is one with the blocking filter, which
enables long exposures of the earthshine. The bright, rectan-
gular patch indicates the area of five strips used to compare
the earthshine intensity with and without the moonshine
filter (BS filter), so as to determine the transmission of the
BS filter. The lunar phase was +134° that night, and so

the earthshine signal is relatively strong. The crescent is
not visible through the strong blocking filter in the original
image, but has been restored here for reference.

Figure 15: The upper panel shows the observed, BS
filter-blocked earthshine intensity as a function of airmass
on February 1, 2000. The “+” signs in that panel represent
the intensity of one of the stripes. The linear fit to the data
has been extrapolated to zero airmass with that result being
indicated by the asterisk, which is the left-most mark on the
fit. The lower panel shows the same type of data, but with-
out the BS filter. The ratio of the two intensities, for that
night, extrapolated to zero airmass, and corrected for the
small effect of stray light, implies a MS filter transmission
of 0.011440.0005. The lunar phase that night was +134°.



