Major operational solar telescopes have AQ -AO routine for almost all observations

Goode Solar Telescope Big Bear, USA 1.6 m 8 cm subap. 357 act. 2.2 kHz highest order

GREGOR Tenerife $1.5 \, m$ 9.6 cm subap. 256 act. 2.1 kHz

Solar Telescope La Palma 1 m 10 cm subap. 85 act. 2 kHz

New Vacuum Solar Telescope China 1 m 8.3 cm subap. 151 act. 3.5 kHz

Dunn Solar Telescope Sunspot, USA 0.76 m 7.6 cm subap. 97 act. $2.5 \,\mathrm{kHz}$ first solar AO

Vacuum Tower Telescope Tenerife 0.7 m 10 cm subap. 37 act. 2.1 kHz

Schematic of Shack-Hartmann Adaptive Optics

New Jersey's Science & Technology University

Pupil Wavefront into Subapertures

Big Bear Solar Observatory

New Jersey's Science & Technology University

Effect of Telescope Resolution - Intensity

KNOWLEDGE

N

GST Scientific Instruments

- Adaptive Optics System (AO: AO-76, AO-308, GLAO & MCAO)
- Visible Imaging Spectrometer (VIS, VISP)
 - Near InfraRed Imaging Spectropolarimeters (IRIM, NIRIS) –
 - Cryogenic Infrared Spectrograph
 (CYRA)
 - Broad-band Filter Imager (BFI)
 - Fast Imaging Solar Spectrograph
 (FISS)

NULL New Jersey's Science & Technology University

Big Bear Solar Observatory

1st Generation AO: AO-76

AO-76

- Xinetics Deformable Mirror with 97 actuators and 7 mm spacing
- Baja camera with a frame rate of 2500 Hz for 200 by 200 sub-array
- Bitware Hammerhead Boards with 40 digital signal processors (DSPs)
- Closed-loop Bandwidth: 120 Hz
- Strehl ratio: 0.7 in the NIR under median BBSO seeing
- BBSO $r_0 = 6 \sim 8 \text{ cm} \oplus 500 \text{ nm, GST}$ requires 20 sub-apertures across pupil
- Note: @ 1000 nm $r_0 = 14 \sim 18$ cm, 10 sub-apertures across (r_0 varies as $\lambda^{6/5}$)

Big Bear Solar Observatory

New Jersey's Science & Technology University

2nd Generation AO: AO-308

- AO-308 is operational, AO-308 is a collaboration between BBSO and NSO
- Shack Hartmann WFS with 308 subapertures (AO-308): 20 sub-apertures across the NST primary mirror
- Xinetics Deformable Mirror with 357 actuators and 5 mm spacing
- Phantom V.7.3 camera with a frame rate of 2000 Hz for 400 by 400 pixel sub-array
- Bitware TigerSHARC Boards with 16 digital signal processors (DSPs)
- Closed-loop Bandwidth: 120 Hz
- Acquire diffraction limited imaging over the telescope's full range of operation

New Jersey's Science & Technology University

Big Bear Solar Observatory

THE EDGE IN KNOWLEDGE

400 pixels (20 subapertur

TiO (705 nm): 2010 (AO-76, 70"x70") vs. 2013 (AO-308, 50"x45")

Big Bear Solar Observatory

CAO (Gen II, AO-308) – Off & On CAO On + Speckle Image Reconstruction

Adaptive Optics Off

Adaptive Optics On

AO On with image post processing

2 September 2013 - TiO

Big Bear Solar Observatory

Classic AO Sunspot

- May 22, 2013
 - 43 mins
 - TiO (705 nm)
 - 50"x45" FOV

Flare 5 July 2012

- 1083.0 nm
- Nearly 3 hrs
- CAO & Speckle
- At 21:47 FOV Lit
- Need sub-second timestep over FOV
- 50000 km x 50000 km field
- Spot roughly the size of Earth

Why Isn't One Adaptive Mirror (DM) Enough?

Big Bear Solar Observatory

MCAO Schematic

Big Bear Solar Observatory

Generic Solar MCAO: WFS, DMs, & Guide Regions

- Why 3 DMs?
 - Rough expection:
 - One for groundlayer
 - One for transition layer
 - One for jetstream?
- How Many Guide Regions are Required?
 - FOV & location of turbulent layers
 - # of Guide Regions & # of DMs Roughly Related
- WFSs
 - Two at first

Meta-pupil Diameter =D+2 θ H = 1.6 + θ (arcsec)/60 H(km)/3.5

Big Bear Solar Observatory

New Jersey's Science & Technology University

Setup with WFSs Downstream of DMs/

Big Bear Solar Observatory

New Jersey's Science & Technology University

N

THE EDGE IN KNOWLEDGE

60000

MCAO Design

Pupil Mirror

Three Cooktops Randomly Placed in Optical Path

CAO (1DM) No AO MCAO (3DM)

Big Bear Solar Observatory

Narrowing the FOV (Rigaut et al. 2000) from 70"x70" to 35"x35"

Narrow FOV (θ) & Increase Depth of Field (Δh_{max})

$\Delta h_{max}(in km) = 3.6 d_{act}(in cm)/\theta(in arcsec)$

- 35" FOV, this is approximately 3.6x9 cm/35" ≈ 1 km for the DM conjugate to the pupil,
- approximately ± 2 km for a DM when conjugate to 3 km,
- and about ± 3 km for a DM in 8 km,
- Thus, continuously cover the range from 0 to 11 km with the reduced wavefront sensing FOV

Big Bear Solar Observatory

Setup That Worked

- Clear Successful MCAO Demonstrator
- Cut FOV from 70"x70" to 35"x35"
 - Narrow FOV to increase Depth of Field (Depth inverse to FOV)
 - Conjugated DMs to 0, 3 & 8 km covers 0-11 km (0-1, 1-5, 5-11 km resp.)
 - 9(3x3 over field) Guide Regions (analogous to nighttime guide stars)
- New MD-WFS Camera
 - 208 (16 across diameter, 8.8 cm) subapertures, each with 3x3 guide regions
 - Camera 992x992 px able to read 208 @ 1600 fps (but limited to 1000 Hz by control computer)
- MCAO Light Feed
 - Highest conjugated DM to Mid-DM to Pupil DM to WFS
 - Same order as is Gemini South (two DMS & 3 Natural/5 Laser Guide Stars)
- "Science Camera": PCO.2000 (2Kx2K) 15 frames/s
- 3DMs better than 2 DMs

Big Bear Solar Observatory

MCAO (53''x53'') GLAO (7/27/16) CAO

MCAO (53''x53'') GLAO (7/27/16) CAO

New Jersey's Science & Technology University

Upper Left Corner of MCAO Reconstructed VS. MCAO Summed

7/27/16 TiO ~15"x10"

Observatory

G-Band (430.5 nm) 53"x53" FOV

Sunspot 7/21& Fried Parameter

nt©h pr

7/21 Another Sunspot 3 Hours Later

0.7 μm Vs. 1.56µm - - Trial Run Data from 10/26/17

N

- Feed current MCAO setup to BBSO spectro-polarimeters for origins of space weather studies
 - Lead in to Prof. Vasyl Yurchyshyn's Talk

Big Bear Solar Observatory

